Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add OmidZamani/dspy-skills --skill "dspy-gepa-reflective"
Install specific skill from multi-skill repository
# Description
This skill should be used when the user asks to "optimize an agent with GEPA", "use reflective optimization", "optimize ReAct agents", "provide feedback metrics", mentions "GEPA optimizer", "LLM reflection", "execution trajectories", "agentic systems optimization", or needs to optimize complex multi-step agents using textual feedback on execution traces.
# SKILL.md
name: dspy-gepa-reflective
version: "1.0.0"
dspy-compatibility: "3.1.2"
description: This skill should be used when the user asks to "optimize an agent with GEPA", "use reflective optimization", "optimize ReAct agents", "provide feedback metrics", mentions "GEPA optimizer", "LLM reflection", "execution trajectories", "agentic systems optimization", or needs to optimize complex multi-step agents using textual feedback on execution traces.
allowed-tools:
- Read
- Write
- Glob
- Grep
DSPy GEPA Optimizer
Goal
Optimize complex agentic systems using LLM reflection on full execution traces with Pareto-based evolutionary search.
When to Use
- Agentic systems with tool use
- When you have rich textual feedback on failures
- Complex multi-step workflows
- Instruction-only optimization needed
Related Skills
- For non-agentic programs: dspy-miprov2-optimizer, dspy-bootstrap-fewshot
- Measure improvements: dspy-evaluation-suite
Inputs
| Input | Type | Description |
|---|---|---|
program |
dspy.Module |
Agent or complex program |
trainset |
list[dspy.Example] |
Training examples |
metric |
callable |
Must return (score, feedback) tuple |
reflection_lm |
dspy.LM |
Strong LM for reflection (GPT-4) |
auto |
str |
"light", "medium", "heavy" |
Outputs
| Output | Type | Description |
|---|---|---|
compiled_program |
dspy.Module |
Reflectively optimized program |
Workflow
Phase 1: Define Feedback Metric
GEPA requires metrics that return textual feedback:
def gepa_metric(example, pred, trace=None):
"""Must return (score, feedback) tuple."""
is_correct = example.answer.lower() in pred.answer.lower()
if is_correct:
feedback = "Correct. The answer accurately addresses the question."
else:
feedback = f"Incorrect. Expected '{example.answer}' but got '{pred.answer}'. The model may have misunderstood the question or retrieved irrelevant information."
return is_correct, feedback
Phase 2: Setup Agent
import dspy
def search(query: str) -> list[str]:
"""Search knowledge base for relevant information."""
rm = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
results = rm(query, k=3)
return results if isinstance(results, list) else [results]
def calculate(expression: str) -> float:
"""Safely evaluate mathematical expressions."""
with dspy.PythonInterpreter() as interp:
return interp(expression)
agent = dspy.ReAct("question -> answer", tools=[search, calculate])
Phase 3: Optimize with GEPA
dspy.configure(lm=dspy.LM("openai/gpt-4o-mini"))
optimizer = dspy.GEPA(
metric=gepa_metric,
reflection_lm=dspy.LM("openai/gpt-4o"), # Strong model for reflection
auto="medium"
)
compiled_agent = optimizer.compile(agent, trainset=trainset)
Production Example
import dspy
from dspy.evaluate import Evaluate
import logging
logger = logging.getLogger(__name__)
class ResearchAgent(dspy.Module):
def __init__(self):
self.react = dspy.ReAct(
"question -> answer",
tools=[self.search, self.summarize]
)
def search(self, query: str) -> list[str]:
"""Search for relevant documents."""
rm = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
results = rm(query, k=5)
return results if isinstance(results, list) else [results]
def summarize(self, text: str) -> str:
"""Summarize long text into key points."""
summarizer = dspy.Predict("text -> summary")
return summarizer(text=text).summary
def forward(self, question):
return self.react(question=question)
def detailed_feedback_metric(example, pred, trace=None):
"""Rich feedback for GEPA reflection."""
expected = example.answer.lower().strip()
actual = pred.answer.lower().strip() if pred.answer else ""
# Exact match
if expected == actual:
return 1.0, "Perfect match. Answer is correct and concise."
# Partial match
if expected in actual or actual in expected:
return 0.7, f"Partial match. Expected '{example.answer}', got '{pred.answer}'. Answer contains correct info but may be verbose or incomplete."
# Check for key terms
expected_terms = set(expected.split())
actual_terms = set(actual.split())
overlap = len(expected_terms & actual_terms) / max(len(expected_terms), 1)
if overlap > 0.5:
return 0.5, f"Some overlap. Expected '{example.answer}', got '{pred.answer}'. Key terms present but answer structure differs."
return 0.0, f"Incorrect. Expected '{example.answer}', got '{pred.answer}'. The agent may need better search queries or reasoning."
def optimize_research_agent(trainset, devset):
"""Full GEPA optimization pipeline."""
dspy.configure(lm=dspy.LM("openai/gpt-4o-mini"))
agent = ResearchAgent()
# Convert metric for evaluation (just score)
def eval_metric(example, pred, trace=None):
score, _ = detailed_feedback_metric(example, pred, trace)
return score
evaluator = Evaluate(devset=devset, num_threads=8, metric=eval_metric)
baseline = evaluator(agent)
logger.info(f"Baseline: {baseline:.2%}")
# GEPA optimization
optimizer = dspy.GEPA(
metric=detailed_feedback_metric,
reflection_lm=dspy.LM("openai/gpt-4o"),
auto="medium",
enable_tool_optimization=True # Also optimize tool descriptions
)
compiled = optimizer.compile(agent, trainset=trainset)
optimized = evaluator(compiled)
logger.info(f"Optimized: {optimized:.2%}")
compiled.save("research_agent_gepa.json")
return compiled
Tool Optimization
GEPA can jointly optimize predictor instructions AND tool descriptions:
optimizer = dspy.GEPA(
metric=gepa_metric,
reflection_lm=dspy.LM("openai/gpt-4o"),
auto="medium",
enable_tool_optimization=True # Optimize tool docstrings too
)
Best Practices
- Rich feedback - More detailed feedback = better reflection
- Strong reflection LM - Use GPT-4 or Claude for reflection
- Agentic focus - Best for ReAct and multi-tool systems
- Trace analysis - GEPA analyzes full execution trajectories
Limitations
- Requires custom feedback metrics (not just scores)
- Expensive: uses strong LM for reflection
- Newer optimizer, less battle-tested than MIPROv2
- Best for instruction optimization, less for demos
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.