Accelerate LLM inference using speculative decoding, Medusa multiple heads, and lookahead decoding techniques. Use when optimizing inference speed (1.5-3.6Γ speedup), reducing latency for...
Activation-aware weight quantization for 4-bit LLM compression with 3x speedup and minimal accuracy loss. Use when deploying large models (7B-70B) on limited GPU memory, when you need faster...
Expert guidance for fast fine-tuning with Unsloth - 2-5x faster training, 50-80% less memory, LoRA/QLoRA optimization
Provides guidance for LLM post-training with RL using slime, a Megatron+SGLang framework. Use when training GLM models, implementing custom data generation workflows, or needing tight Megatron-LM...
Evaluates LLMs across 100+ benchmarks from 18+ harnesses (MMLU, HumanEval, GSM8K, safety, VLM) with multi-backend execution. Use when needing scalable evaluation on local Docker, Slurm HPC, or...
Simple Preference Optimization for LLM alignment. Reference-free alternative to DPO with better performance (+6.4 points on AlpacaEval 2.0). No reference model needed, more efficient than DPO. Use...
Autonomous AI agent platform for building and deploying continuous agents. Use when creating visual workflow agents, deploying persistent autonomous agents, or building complex multi-step AI...
Track ML experiments, manage model registry with versioning, deploy models to production, and reproduce experiments with MLflow - framework-agnostic ML lifecycle platform
Anthropic's method for training harmless AI through self-improvement. Two-phase approach - supervised learning with self-critique/revision, then RLAIF (RL from AI Feedback). Use for safety...
Train Mixture of Experts (MoE) models using DeepSpeed or HuggingFace. Use when training large-scale models with limited compute (5Γ cost reduction vs dense models), implementing sparse...
Implements and trains LLMs using Lightning AI's LitGPT with 20+ pretrained architectures (Llama, Gemma, Phi, Qwen, Mistral). Use when need clean model implementations, educational understanding of...
Provides guidance for enterprise-grade RL training using miles, a production-ready fork of slime. Use when training large MoE models with FP8/INT4, needing train-inference alignment, or requiring...
Expert guidance for fine-tuning LLMs with Axolotl - YAML configs, 100+ models, LoRA/QLoRA, DPO/KTO/ORPO/GRPO, multimodal support
High-performance RLHF framework with Ray+vLLM acceleration. Use for PPO, GRPO, RLOO, DPO training of large models (7B-70B+). Built on Ray, vLLM, ZeRO-3. 2Γ faster than DeepSpeedChat with...
Half-Quadratic Quantization for LLMs without calibration data. Use when quantizing models to 4/3/2-bit precision without needing calibration datasets, for fast quantization workflows, or when...
Scalable data processing for ML workloads. Streaming execution across CPU/GPU, supports Parquet/CSV/JSON/images. Integrates with Ray Train, PyTorch, TensorFlow. Scales from single machine to 100s...
Evaluates code generation models across HumanEval, MBPP, MultiPL-E, and 15+ benchmarks with pass@k metrics. Use when benchmarking code models, comparing coding abilities, testing multi-language...
Visualize training metrics, debug models with histograms, compare experiments, visualize model graphs, and profile performance with TensorBoard - Google's ML visualization toolkit
Fast structured generation and serving for LLMs with RadixAttention prefix caching. Use for JSON/regex outputs, constrained decoding, agentic workflows with tool calls, or when you need 5Γ faster...
Post-training 4-bit quantization for LLMs with minimal accuracy loss. Use for deploying large models (70B, 405B) on consumer GPUs, when you need 4Γ memory reduction with <2% perplexity...