Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add zechenzhangAGI/AI-research-SKILLs --skill "slime-rl-training"
Install specific skill from multi-skill repository
# Description
Provides guidance for LLM post-training with RL using slime, a Megatron+SGLang framework. Use when training GLM models, implementing custom data generation workflows, or needing tight Megatron-LM integration for RL scaling.
# SKILL.md
name: slime-rl-training
description: Provides guidance for LLM post-training with RL using slime, a Megatron+SGLang framework. Use when training GLM models, implementing custom data generation workflows, or needing tight Megatron-LM integration for RL scaling.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Reinforcement Learning, Megatron-LM, SGLang, GRPO, Post-Training, GLM]
dependencies: [sglang-router>=0.2.3, ray, torch>=2.0.0, transformers>=4.40.0]
slime: LLM Post-Training Framework for RL Scaling
slime is an LLM post-training framework from Tsinghua's THUDM team, powering GLM-4.5, GLM-4.6, and GLM-4.7. It connects Megatron-LM for training with SGLang for high-throughput rollout generation.
When to Use slime
Choose slime when you need:
- Megatron-LM native training with SGLang inference
- Custom data generation workflows with flexible data buffers
- Training GLM, Qwen3, DeepSeek V3, or Llama 3 models
- Research-grade framework with production backing (Z.ai)
Consider alternatives when:
- You need enterprise-grade stability features β use miles
- You want flexible backend swapping β use verl
- You need PyTorch-native abstractions β use torchforge
Key Features
- Training: Megatron-LM with full parallelism support (TP, PP, DP, SP)
- Rollout: SGLang-based high-throughput generation with router
- Data Buffer: Flexible prompt management and sample storage
- Models: GLM-4.x, Qwen3, DeepSeek V3/R1, Llama 3
Architecture Overview
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Data Buffer β
β - Prompt initialization and management β
β - Custom data generation and filtering β
β - Rollout sample storage β
βββββββββββββββ¬ββββββββββββββββββββββββββββ¬ββββββββββββββββ
β β
βββββββββββββββΌββββββββββββ βββββββββββββββΌββββββββββββββββ
β Training (Megatron-LM) β β Rollout (SGLang + Router) β
β - Actor model training β β - Response generation β
β - Critic (optional) β β - Reward/verifier output β
β - Weight sync to rolloutβ β - Multi-turn support β
βββββββββββββββββββββββββββ βββββββββββββββββββββββββββββββ
Installation
# Recommended: Docker
docker pull slimerl/slime:latest
docker run --rm --gpus all --ipc=host --shm-size=16g \
-it slimerl/slime:latest /bin/bash
# Inside container
cd /root/slime && pip install -e . --no-deps
From Source
git clone https://github.com/THUDM/slime.git
cd slime
pip install -r requirements.txt
pip install -e .
Quick Start: GRPO Training
# Source model configuration
source scripts/models/qwen3-4B.sh
# Launch training
python train.py \
--actor-num-nodes 1 \
--actor-num-gpus-per-node 4 \
--rollout-num-gpus 4 \
--advantage-estimator grpo \
--use-kl-loss --kl-loss-coef 0.001 \
--rollout-batch-size 32 \
--n-samples-per-prompt 8 \
--global-batch-size 256 \
--num-rollout 3000 \
--prompt-data /path/to/data.jsonl \
${MODEL_ARGS[@]} ${CKPT_ARGS[@]}
Workflow 1: Standard GRPO Training
Use this workflow for training reasoning models with group-relative advantages.
Prerequisites Checklist
- [ ] Docker environment or Megatron-LM + SGLang installed
- [ ] Model checkpoint (HuggingFace or Megatron format)
- [ ] Training data in JSONL format
Step 1: Prepare Data
# data.jsonl format
{"prompt": "What is 2 + 2?", "label": "4"}
{"prompt": "Solve: 3x = 12", "label": "x = 4"}
Or with chat format:
{
"prompt": [
{"role": "system", "content": "You are a math tutor."},
{"role": "user", "content": "What is 15 + 27?"}
],
"label": "42"
}
Step 2: Configure Model
Choose a pre-configured model script:
# List available models
ls scripts/models/
# glm4-9B.sh, qwen3-4B.sh, qwen3-30B-A3B.sh, deepseek-v3.sh, llama3-8B.sh, ...
# Source your model
source scripts/models/qwen3-4B.sh
Step 3: Launch Training
python train.py \
--actor-num-nodes 1 \
--actor-num-gpus-per-node 8 \
--rollout-num-gpus 8 \
--advantage-estimator grpo \
--use-kl-loss \
--kl-loss-coef 0.001 \
--prompt-data /path/to/train.jsonl \
--input-key prompt \
--label-key label \
--apply-chat-template \
--rollout-batch-size 32 \
--n-samples-per-prompt 8 \
--global-batch-size 256 \
--num-rollout 3000 \
--save-interval 100 \
--eval-interval 50 \
${MODEL_ARGS[@]}
Step 4: Monitor Training
- [ ] Check TensorBoard:
tensorboard --logdir outputs/ - [ ] Verify reward curves are increasing
- [ ] Monitor GPU utilization across nodes
Workflow 2: Asynchronous Training
Use async mode for higher throughput by overlapping rollout and training.
When to Use Async
- Large models with long generation times
- High GPU idle time in synchronous mode
- Sufficient memory for buffering
Launch Async Training
python train_async.py \
--actor-num-nodes 1 \
--actor-num-gpus-per-node 8 \
--rollout-num-gpus 8 \
--advantage-estimator grpo \
--async-buffer-size 4 \
--prompt-data /path/to/train.jsonl \
${MODEL_ARGS[@]}
Async-Specific Parameters
--async-buffer-size 4 # Number of rollouts to buffer
--update-weights-interval 2 # Sync weights every N rollouts
Workflow 3: Multi-Turn Agentic Training
Use this workflow for training agents with tool use or multi-step reasoning.
Prerequisites
- [ ] Custom generate function for multi-turn logic
- [ ] Tool/environment interface
Step 1: Define Custom Generate Function
# custom_generate.py
async def custom_generate(args, samples, evaluation=False):
"""Multi-turn generation with tool calling."""
for sample in samples:
conversation = sample.prompt
for turn in range(args.max_turns):
# Generate response
response = await generate_single(conversation)
# Check for tool call
tool_call = extract_tool_call(response)
if tool_call:
tool_result = execute_tool(tool_call)
conversation.append({"role": "assistant", "content": response})
conversation.append({"role": "tool", "content": tool_result})
else:
break
sample.response = response
sample.reward = compute_reward(sample)
return samples
Step 2: Launch with Custom Function
python train.py \
--custom-generate-function-path custom_generate.py \
--max-turns 5 \
--prompt-data /path/to/agent_data.jsonl \
${MODEL_ARGS[@]}
See examples/search-r1/ for a complete multi-turn search example.
Configuration Reference
Three Argument Categories
slime uses three types of arguments:
1. Megatron Arguments (passed directly):
--tensor-model-parallel-size 2
--pipeline-model-parallel-size 1
--num-layers 32
--hidden-size 4096
2. SGLang Arguments (prefixed with --sglang-):
--sglang-mem-fraction-static 0.8
--sglang-context-length 8192
--sglang-log-level INFO
3. slime Arguments:
# Resource allocation
--actor-num-nodes 1
--actor-num-gpus-per-node 8
--rollout-num-gpus 8
--colocate # Share GPUs between training/inference
# Data
--prompt-data /path/to/data.jsonl
--input-key prompt
--label-key label
# Training loop
--num-rollout 3000
--rollout-batch-size 32
--n-samples-per-prompt 8
--global-batch-size 256
# Algorithm
--advantage-estimator grpo # or: gspo, ppo, reinforce_plus_plus
--use-kl-loss
--kl-loss-coef 0.001
Key Constraints
rollout_batch_size Γ n_samples_per_prompt = global_batch_size Γ num_steps_per_rollout
Example: 32 Γ 8 = 256 Γ 1
Data Buffer System
slime's data buffer enables flexible data management:
Basic Data Source
class RolloutDataSource:
def get_samples(self, num_samples):
"""Fetch prompts from dataset."""
return self.dataset.sample(num_samples)
def add_samples(self, samples):
"""Called after generation (no-op by default)."""
pass
Buffered Data Source (Off-Policy)
class RolloutDataSourceWithBuffer(RolloutDataSource):
def __init__(self):
self.buffer = []
def add_samples(self, samples):
"""Store generated samples for reuse."""
self.buffer.extend(samples)
def buffer_filter(self, args, buffer, num_samples):
"""Custom selection logic (prioritized, stratified, etc.)."""
return select_best(buffer, num_samples)
Common Issues and Solutions
Issue: SGLang Engine Crash
Symptoms: Inference engine dies mid-training
Solutions:
# Enable fault tolerance
--use-fault-tolerance
# Increase memory allocation
--sglang-mem-fraction-static 0.85
# Reduce batch size
--rollout-batch-size 16
Issue: Weight Sync Timeout
Symptoms: Training hangs after rollout
Solutions:
# Increase sync interval
--update-weights-interval 5
# Use colocated mode (no network transfer)
--colocate
Issue: OOM During Training
Symptoms: CUDA OOM in backward pass
Solutions:
# Enable gradient checkpointing
--recompute-activations
# Reduce micro-batch size
--micro-batch-size 1
# Enable sequence parallelism
--sequence-parallel
Issue: Slow Data Loading
Symptoms: GPU idle during data fetch
Solutions:
# Increase data workers
--num-data-workers 4
# Use streaming dataset
--streaming-data
Supported Models
| Model Family | Configurations |
|---|---|
| GLM | GLM-4.5, GLM-4.6, GLM-4.7, GLM-Z1-9B |
| Qwen | Qwen3 (4B, 8B, 30B-A3B), Qwen3-MoE, Qwen2.5 |
| DeepSeek | V3, V3.1, R1 |
| Llama | Llama 3 (8B, 70B) |
| Others | Kimi K2, Moonlight-16B |
Each model has pre-configured scripts in scripts/models/.
Advanced Topics
Co-location Mode
Share GPUs between training and inference to reduce memory:
python train.py \
--colocate \
--actor-num-gpus-per-node 8 \
--sglang-mem-fraction-static 0.4 \
${MODEL_ARGS[@]}
Custom Reward Model
# custom_rm.py
class CustomRewardModel:
def __init__(self, model_path):
self.model = load_model(model_path)
def compute_reward(self, prompts, responses):
inputs = self.tokenize(prompts, responses)
scores = self.model(inputs)
return scores.tolist()
--custom-rm-path custom_rm.py
Evaluation Multi-Task
--eval-prompt-data aime /path/to/aime.jsonl \
--eval-prompt-data gsm8k /path/to/gsm8k.jsonl \
--n-samples-per-eval-prompt 16
Resources
- Documentation: https://thudm.github.io/slime/
- GitHub: https://github.com/THUDM/slime
- Blog: https://lmsys.org/blog/2025-07-09-slime/
- Examples: See
examples/directory for 14+ worked examples
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.