Ianfr13

agents-sdk

0
0
# Install this skill:
npx skills add Ianfr13/claude-code-plugins --skill "agents-sdk"

Install specific skill from multi-skill repository

# Description

Build stateful AI agents using the Cloudflare Agents SDK. Load when creating agents with persistent state, scheduling, RPC, MCP servers, email handling, or streaming chat. Covers Agent class, AIChatAgent, state management, and Code Mode for reduced token usage.

# SKILL.md


name: agents-sdk
description: Build stateful AI agents using the Cloudflare Agents SDK. Load when creating agents with persistent state, scheduling, RPC, MCP servers, email handling, or streaming chat. Covers Agent class, AIChatAgent, state management, and Code Mode for reduced token usage.


Cloudflare Agents SDK

Build persistent, stateful AI agents on Cloudflare Workers using the agents npm package.

FIRST: Verify Installation

npm install agents

Agents require a binding in wrangler.jsonc:

{
  "durable_objects": {
    // "class_name" must match your Agent class name exactly
    "bindings": [{ "name": "Counter", "class_name": "Counter" }]
  },
  "migrations": [
    // Required: list all Agent classes for SQLite storage
    { "tag": "v1", "new_sqlite_classes": ["Counter"] }
  ]
}

Choosing an Agent Type

Use Case Base Class Package
Custom state + RPC, no chat Agent agents
Chat with message persistence AIChatAgent @cloudflare/ai-chat
Building an MCP server McpAgent agents/mcp

Key Concepts

  • Agent base class provides state, scheduling, RPC, MCP, and email capabilities
  • AIChatAgent adds streaming chat with automatic message persistence and resumable streams
  • Code Mode generates executable code instead of tool callsโ€”reduces token usage significantly
  • this.state / this.setState() - automatic persistence to SQLite, broadcasts to clients
  • this.schedule() - schedule tasks at Date, delay (seconds), or cron expression
  • @callable decorator - expose methods to clients via WebSocket RPC

Quick Reference

Task API
Persist state this.setState({ count: 1 })
Read state this.state.count
Schedule task this.schedule(60, "taskMethod", payload)
Schedule cron this.schedule("0 * * * *", "hourlyTask")
Cancel schedule this.cancelSchedule(id)
Queue task this.queue("processItem", payload)
SQL query this.sql`SELECT * FROM users WHERE id = ${id}`
RPC method @callable() async myMethod() { ... }
Streaming RPC @callable({ streaming: true }) async stream(res) { ... }

Minimal Agent

import { Agent, routeAgentRequest, callable } from "agents";

type State = { count: number };

export class Counter extends Agent<Env, State> {
  initialState = { count: 0 };

  @callable()
  increment() {
    this.setState({ count: this.state.count + 1 });
    return this.state.count;
  }
}

export default {
  fetch: (req, env) => routeAgentRequest(req, env) ?? new Response("Not found", { status: 404 })
};

Streaming Chat Agent

Use AIChatAgent for chat with automatic message persistence and resumable streaming.

Install additional dependencies first:

npm install @cloudflare/ai-chat ai @ai-sdk/openai

Add wrangler.jsonc config (same pattern as base Agent):

{
  "durable_objects": {
    "bindings": [{ "name": "Chat", "class_name": "Chat" }]
  },
  "migrations": [{ "tag": "v1", "new_sqlite_classes": ["Chat"] }]
}
import { AIChatAgent } from "@cloudflare/ai-chat";
import { routeAgentRequest } from "agents";
import { streamText, convertToModelMessages } from "ai";
import { openai } from "@ai-sdk/openai";

export class Chat extends AIChatAgent<Env> {
  async onChatMessage(onFinish) {
    const result = streamText({
      model: openai("gpt-4o"),
      messages: await convertToModelMessages(this.messages),
      onFinish
    });
    return result.toUIMessageStreamResponse();
  }
}

export default {
  fetch: (req, env) => routeAgentRequest(req, env) ?? new Response("Not found", { status: 404 })
};

Client (React):

import { useAgent } from "agents/react";
import { useAgentChat } from "@cloudflare/ai-chat/react";

const agent = useAgent({ agent: "Chat", name: "my-chat" });
const { messages, input, handleSubmit } = useAgentChat({ agent });

Detailed References

When to Use Code Mode

Code Mode generates executable JavaScript instead of making individual tool calls. Use it when:

  • Chaining multiple tool calls in sequence
  • Complex conditional logic across tools
  • MCP server orchestration (multiple servers)
  • Token budget is constrained

See references/codemode.md for setup and examples.

Best Practices

  1. Prefer streaming: Use streamText and toUIMessageStreamResponse() for chat
  2. Use AIChatAgent for chat: Handles message persistence and resumable streams automatically
  3. Type your state: Agent<Env, State> ensures type safety for this.state
  4. Use @callable for RPC: Cleaner than manual WebSocket message handling
  5. Code Mode for complex workflows: Reduces round-trips and token usage
  6. Schedule vs Queue: Use schedule() for time-based, queue() for sequential processing

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.