bgauryy

octocode-documentaion-writer

692
54
# Install this skill:
npx skills add bgauryy/octocode-mcp --skill "octocode-documentaion-writer"

Install specific skill from multi-skill repository

# Description

Generate comprehensive documentation with intelligent orchestration and parallel execution

# SKILL.md


name: octocode-documentaion-writer
description: Generate comprehensive documentation with intelligent orchestration and parallel execution


Repository Documentation Generator

Production-ready 6-phase pipeline with intelligent orchestration, research-first validation, and conflict-free file ownership.


This command orchestrates specialized AI agents in 6 phases to analyze your code repository and generate comprehensive documentation:



Discovery+Analysis (Phase 1)
Agent: Opus
Parallel: 4 parallel agents
What: Analyze language, architecture, flows, and APIs
Input: Repository path
Output: analysis.json


Engineer Questions (Phase 2)
Agent: Opus
What: Generates comprehensive questions based on the analysis
Input: analysis.json
Output: questions.json


Research Agent (Phase 3) πŸ†•
Agent: Sonnet
Parallel: Dynamic (based on question volume)
What: Deep-dive code forensics to ANSWER the questions with evidence
Input: questions.json
Output: research.json


Orchestrator (Phase 4)
Agent: Opus
What: Groups questions by file target and assigns exclusive file ownership to writers
Input: questions.json + research.json
Output: work-assignments.json (file-based assignments for parallel writers)


Documentation Writers (Phase 5)
Agent: Sonnet
Parallel: 1-8 parallel agents (dynamic based on workload)
What: Synthesize research and write comprehensive documentation with exclusive file ownership
Input: analysis.json + questions.json + research.json + work-assignments.json
Output: documentation/*.md (16 core docs, 5 required + supplementary files)


QA Validator (Phase 6)
Agent: Sonnet
What: Validates documentation quality using LSP-powered verification
Input: documentation/*.md + analysis.json + questions.json
Output: qa-results.json + QA-SUMMARY.md


Use spawn explore opus/sonnet/haiku subagents to explore code with MCP tools (localSearchCode, lspGotoDefinition, lspCallHierarchy, lspFindReferences)

Documentation Flow: analysis.json β†’ questions.json β†’ research.json β†’ work-assignments.json β†’ documentation (conflict-free!)


⚠️ CRITICAL: Parallel Agent Execution

STOP. READ THIS TWICE.

1. THE RULE

You MUST spawn parallel agents in a SINGLE message with multiple Task tool calls.

2. FORBIDDEN BEHAVIOR

FORBIDDEN: Calling Task sequentially (one per response).
REASON: Sequential calls defeat parallelism and slow down execution by 4x-8x.

3. REQUIRED CONFIRMATION

Before launching any parallel phase (1, 3, 5), you MUST verify:
- [ ] All Task calls are prepared for a SINGLE response
- [ ] No dependencies exist between these parallel agents
- [ ] Each agent has exclusive scope (no file conflicts)

// In ONE assistant message, include ALL Task tool invocations:
Task(description="Discovery 1A-language", subagent_type="general-purpose", prompt="...", model="opus")
Task(description="Discovery 1B-components", subagent_type="general-purpose", prompt="...", model="opus")
Task(description="Discovery 1C-dependencies", subagent_type="general-purpose", prompt="...", model="opus")
Task(description="Discovery 1D-flows", subagent_type="general-purpose", prompt="...", model="opus")
// ↑ All 4 execute SIMULTANEOUSLY

// DON'T DO THIS - Each waits for previous to complete
Message 1: Task(description="Discovery 1A") β†’ wait for result
Message 2: Task(description="Discovery 1B") β†’ wait for result
Message 3: Task(description="Discovery 1C") β†’ wait for result
Message 4: Task(description="Discovery 1D") β†’ wait for result
// ↑ 4x slower! No parallelism achieved


Execution Flow Diagram

flowchart TB
    Start([/octocode-documentaion-writer PATH]) --> Validate[Pre-Flight Validation]
    Validate --> Init[Initialize Workspace]

    Init --> P1[Phase 1: Discovery+Analysis]

    subgraph P1_Parallel["πŸ”„ RUN IN PARALLEL (4 agents)"]
        P1A[Agent 1A:<br/>Language & Manifests]
        P1B[Agent 1B:<br/>Components]
        P1C[Agent 1C:<br/>Dependencies]
        P1D[Agent 1D:<br/>Flows & APIs]
    end

    P1 --> P1_Parallel
    P1_Parallel --> P1Agg[Aggregation:<br/>Merge into analysis.json]
    P1Agg --> P1Done[βœ… analysis.json created]

    P1Done -->|Reads analysis.json| P2[Phase 2: Engineer Questions<br/>Single Agent - Opus]
    P2 --> P2Done[βœ… questions.json created]

    P2Done -->|Reads questions.json| P3[Phase 3: Research πŸ†•<br/>Parallel Agents - Sonnet]

    subgraph P3_Parallel["πŸ”„ RUN IN PARALLEL"]
       P3A[Researcher 1]
       P3B[Researcher 2]
       P3C[Researcher 3]
    end

    P3 --> P3_Parallel
    P3_Parallel --> P3Agg[Aggregation:<br/>Merge into research.json]
    P3Agg --> P3Done[βœ… research.json created<br/>Evidence-backed answers]

    P3Done -->|Reads questions + research| P4[Phase 4: Orchestrator<br/>Single Agent - Opus]
    P4 --> P4Group[Group questions<br/>by file target]
    P4 --> P4Assign[Assign file ownership<br/>to writers]
    P4Assign --> P4Done[βœ… work-assignments.json]

    P4Done --> P5[Phase 5: Documentation Writers]
    P5 --> P5Input[πŸ“– Input:<br/>work-assignments.json<br/>+ research.json]
    P5Input --> P5Dist[Each writer gets<br/>exclusive file ownership]

    subgraph P5_Parallel["πŸ”„ RUN IN PARALLEL (1-8 agents)"]
        P5W1[Writer 1]
        P5W2[Writer 2]
        P5W3[Writer 3]
        P5W4[Writer 4]
    end

    P5Dist --> P5_Parallel
    P5_Parallel --> P5Verify[Verify Structure]
    P5Verify --> P5Done[βœ… documentation/*.md created]

    P5Done --> P6[Phase 6: QA Validator<br/>Single Agent - Sonnet]
    P6 --> P6Done[βœ… qa-results.json +<br/>QA-SUMMARY.md]

    P6Done --> Complete([βœ… Documentation Complete])

    style P1_Parallel fill:#e1f5ff
    style P3_Parallel fill:#e1f5ff
    style P5_Parallel fill:#ffe1f5
    style P4 fill:#fff3cd
    style Complete fill:#28a745,color:#fff

Parallel Execution Rules




STOP. Verify parallel spawn requirements.
REQUIRED: Spawn 4 agents in ONE message.
FORBIDDEN: Sequential Task calls.

4
Discovery and Analysis
⚠️ Launch ALL 4 Task calls in ONE response

All 4 agents start simultaneously via single-message spawn
Wait for ALL 4 to complete before aggregation
Must aggregate 4 partial JSONs into analysis.json

<phase name="2-questions" type="single" critical="true" spawn="sequential">
    <agent_count>1</agent_count>
    <description>Engineer Questions Generation</description>
    <spawn_instruction>Single agent, wait for completion</spawn_instruction>
</phase>

<phase name="3-research" type="parallel" critical="true" spawn="single_message">
    <gate>
    **STOP.** Verify parallel spawn requirements.
    **REQUIRED:** Spawn N researchers in ONE message.
    **FORBIDDEN:** Sequential Task calls.
    </gate>
    <agent_count_logic>
        <case condition="questions &lt; 10">1 agent</case>
        <case condition="questions &gt;= 10">Ceil(questions / 15)</case>
    </agent_count_logic>
    <description>Evidence Gathering</description>
    <spawn_instruction>⚠️ Launch ALL researcher Task calls in ONE response</spawn_instruction>
    <rules>
        <rule>Split questions into batches BEFORE spawning</rule>
        <rule>All researchers start simultaneously</rule>
        <rule>Aggregate findings into research.json</rule>
    </rules>
</phase>

<phase name="4-orchestrator" type="single" critical="true" spawn="sequential">
    <agent_count>1</agent_count>
    <description>Orchestration and Assignment</description>
    <spawn_instruction>Single agent, wait for completion</spawn_instruction>
    <rules>
        <rule>Assign EXCLUSIVE file ownership to writers</rule>
        <rule>Distribute research findings to relevant writers</rule>
    </rules>
</phase>

<phase name="5-writers" type="dynamic_parallel" critical="false" spawn="single_message">
    <gate>
    **STOP.** Verify parallel spawn requirements.
    **REQUIRED:** Spawn all writers in ONE message.
    **FORBIDDEN:** Sequential Task calls.
    </gate>
    <agent_count_logic>
        <case condition="questions &lt; 20">1 agent</case>
        <case condition="questions 20-99">2-4 agents</case>
        <case condition="questions &gt;= 100">4-8 agents</case>
    </agent_count_logic>
    <spawn_instruction>⚠️ Launch ALL writer Task calls in ONE response</spawn_instruction>
    <rules>
        <rule>Each writer owns EXCLUSIVE files - no conflicts possible</rule>
        <rule>All writers start simultaneously via single-message spawn</rule>
        <rule>Use provided research.json as primary source</rule>
    </rules>
</phase>

<phase name="6-qa" type="single" critical="false" spawn="sequential">
    <agent_count>1</agent_count>
    <description>Quality Validation</description>
    <spawn_instruction>Single agent, wait for completion</spawn_instruction>
</phase>

Pre-Flight Checks


HALT. Complete these requirements before proceeding:

Required Checks

  1. Verify Path Existence
  2. IF repository_path missing β†’ THEN ERROR & EXIT
  3. Verify Directory Status
  4. IF not a directory β†’ THEN ERROR & EXIT
  5. Source Code Check
  6. IF < 3 source files β†’ THEN WARN & Ask User (Exit if no)
  7. Build Directory Check
  8. IF contains node_modules or dist β†’ THEN ERROR & EXIT
  9. Size Estimation
  10. IF > 200k LOC β†’ THEN WARN & Ask User (Exit if no)

FORBIDDEN until gate passes:
- Any agent spawning
- Workspace initialization


Before starting, validate the repository path and check for edge cases.

  1. Verify Path Existence
  2. Ensure repository_path exists.
  3. If not, raise an ERROR: "Repository path does not exist: " + path and EXIT.

  4. Verify Directory Status

  5. Confirm repository_path is a directory.
  6. If not, raise an ERROR: "Path is not a directory: " + path and EXIT.

  7. Source Code Check

  8. Count files ending in .ts, .js, .py, .go, or .rs.
  9. Exclude directories: node_modules, .git, dist, build.
  10. If fewer than 3 source files are found:

    • WARN: "Very few source files detected ({count}). This may not be a code repository."
    • Ask user: "Continue anyway? [y/N]"
    • If not confirmed, EXIT.
  11. Build Directory Check

  12. Ensure the path does not contain node_modules, dist, or build.
  13. If it does, raise an ERROR: "Repository path appears to be a build directory. Please specify the project root." and EXIT.

  14. Size Estimation

  15. Estimate the repository size.
  16. If larger than 200,000 LOC:
    • WARN: "Large repository detected (~{size} LOC)."
    • Ask user: "Continue anyway? [y/N]"
    • If not confirmed, EXIT.

Initialize Workspace


STOP. Verify state before initialization.

Required Actions

  1. Define Directories (CONTEXT_DIR, DOC_DIR)
  2. Handle Existing State
  3. IF state.json exists β†’ THEN Prompt User to Resume
  4. IF User says NO β†’ THEN Reset state
  5. Create Directories
  6. Initialize New State (if not resuming)

FORBIDDEN:
- Starting Phase 1 before state is initialized.

Workspace Initialization

Before starting the pipeline, set up the working environment and handle any existing state.

  1. Define Directories
  2. Context Directory (CONTEXT_DIR): ${REPOSITORY_PATH}/.context
  3. Documentation Directory (DOC_DIR): ${REPOSITORY_PATH}/documentation

  4. Handle Existing State

  5. Check if ${CONTEXT_DIR}/state.json exists.
  6. If it exists and the phase is NOT "complete" or "failed":
    • Prompt User: "Found existing documentation generation in progress (phase: [PHASE]). Resume from last checkpoint? [Y/n]"
    • If User Confirms (Yes):
    • Set RESUME_MODE = true
    • Set START_PHASE from the saved state.
    • If User Declines (No):
    • WARN: "Restarting from beginning. Previous progress will be overwritten."
    • Set RESUME_MODE = false
    • Set START_PHASE = "initialized"
  7. If state.json does not exist or previous run finished/failed, start fresh (RESUME_MODE = false).

  8. Create Directories

  9. Ensure CONTEXT_DIR exists (create if missing).
  10. Ensure DOC_DIR exists (create if missing).

  11. Initialize New State (If NOT Resuming)

  12. Create a new state.json using the schema defined in schemas/state-schema.json.

Progress Tracker

Display real-time progress:

πŸ“Š Documentation Generation Progress v3.1
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Repository: {REPOSITORY_PATH}
Mode: {RESUME_MODE ? "Resume" : "New"}

{if RESUME_MODE}
Resuming from: {START_PHASE}
{end}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Agent Pipeline Execution

Phase 1: Discovery+Analysis Agent


GATE: START Phase 1
REQUIRED: Spawn 4 agents in ONE message.
FORBIDDEN: Sequential calls.

Agent Spec: references/agent-discovery-analysis.md
Task Config: schemas/discovery-tasks.json

Property Value
Parallel Agents 4 (1a-language, 1b-components, 1c-dependencies, 1d-flows-apis)
Critical Yes
Output .context/analysis.json

See references/agent-discovery-analysis.md β†’ Orchestrator Execution Logic section for full implementation.

Phase 2: Engineer Questions Agent

Agent Spec: references/agent-engineer-questions.md

Property Value
Agent Type Single (Opus)
Critical Yes
Input .context/analysis.json
Output .context/questions.json

See references/agent-engineer-questions.md β†’ Orchestrator Execution Logic section for full implementation.

Phase 3: Research Agent πŸ†•


GATE: START Phase 3
REQUIRED: Spawn N agents in ONE message.
FORBIDDEN: Sequential calls.

Agent Spec: references/agent-researcher.md

Property Value
Agent Type Parallel (Sonnet)
Critical Yes
Input .context/questions.json
Output .context/research.json

See references/agent-researcher.md β†’ Orchestrator Execution Logic section for full implementation.

Phase 4: Orchestrator Agent

Agent Spec: references/agent-orchestrator.md

Property Value
Agent Type Single (Opus)
Critical Yes
Input .context/analysis.json, .context/questions.json, .context/research.json
Output .context/work-assignments.json

See references/agent-orchestrator.md β†’ Orchestrator Execution Logic section for full implementation.

Phase 5: Documentation Writers


GATE: START Phase 5
REQUIRED: Spawn all writers in ONE message.
FORBIDDEN: Sequential calls.

Agent Spec: references/agent-documentation-writer.md

Property Value
Agent Type Parallel (1-8 Sonnet writers)
Primary Writer Writer 1 (Critical)
Non-Primary Partial failure allowed
Retry Logic Up to 2 retries per failed writer
Input .context/analysis.json, .context/research.json, .context/work-assignments.json
Output documentation/*.md (16 core, 5 required + supplementary)
File Ownership Exclusive (no conflicts)

Writer Scaling Strategy

Strategy Agent Count When Used
sequential 1 < 20 questions
parallel-core 2-4 20-99 questions
parallel-all 4-8 >= 100 questions

See references/agent-documentation-writer.md β†’ Orchestrator Execution Logic section for full implementation.

Phase 6: QA Validator

Agent Spec: references/agent-qa-validator.md

Property Value
Agent Type Single (Sonnet)
Critical No (failure produces warning)
Input .context/analysis.json, .context/questions.json, documentation/*.md
Output .context/qa-results.json, documentation/QA-SUMMARY.md
Score Range 0-100
Quality Ratings excellent (β‰₯90), good (β‰₯75), fair (β‰₯60), needs-improvement (<60)

See references/agent-qa-validator.md β†’ Orchestrator Execution Logic section for full implementation.

Completion

update_state({
  phase: "complete",
  completed_at: new Date().toISOString(),
  current_agent: null
})

DISPLAY: "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
DISPLAY: "βœ… Documentation Complete!"
DISPLAY: ""
DISPLAY: "πŸ“ Location: {DOC_DIR}/"
DISPLAY: "πŸ“Š QA Report: {DOC_DIR}/QA-SUMMARY.md"
DISPLAY: ""

if (parsed_qa && parsed_qa.overall_score):
  DISPLAY: "Quality Score: {parsed_qa.overall_score}/100 ({parsed_qa.quality_rating})"

  if (parsed_qa.overall_score >= 90):
    DISPLAY: "Status: Excellent βœ… - Ready for release"
  else if (parsed_qa.overall_score >= 75):
    DISPLAY: "Status: Good βœ… - Minor improvements recommended"
  else if (parsed_qa.overall_score >= 60):
    DISPLAY: "Status: Fair -️ - Address gaps before release"
  else:
    DISPLAY: "Status: Needs Work -️ - Major improvements required"

  if (parsed_qa.gaps && parsed_qa.gaps.length > 0):
    DISPLAY: ""
    DISPLAY: "Next Steps:"
    for (i = 0; i < Math.min(3, parsed_qa.gaps.length); i++):
      gap = parsed_qa.gaps[i]
      DISPLAY: "  {i+1}. {gap.fix}"

DISPLAY: ""
DISPLAY: "πŸ“ Documentation Coverage:"
DISPLAY: "   {parsed_questions.summary.total_questions} questions researched"
DISPLAY: "   {parsed_qa.question_coverage.answered} questions answered in docs"
DISPLAY: ""
DISPLAY: "View documentation: {DOC_DIR}/index.md"
DISPLAY: "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"

EXIT code 0

Error Recovery

If any agent fails critically:

function handle_critical_failure(phase, error):
  DISPLAY: "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
  DISPLAY: "❌ Documentation Generation Failed"
  DISPLAY: ""
  DISPLAY: "Phase: {phase}"
  DISPLAY: "Error: {error.message}"
  DISPLAY: ""

  if (error.recoverable):
    DISPLAY: "This error is recoverable. Run /octocode-documentaion-writer again to resume."
    DISPLAY: "State saved in: {CONTEXT_DIR}/state.json"
  else:
    DISPLAY: "This error is not recoverable. Please check the error and try again."
    DISPLAY: "You may need to fix the issue before retrying."

  DISPLAY: ""
  DISPLAY: "Logs: {CONTEXT_DIR}/state.json"
  DISPLAY: "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"

  EXIT code 1

Helper Functions

IMPORTANT: State Synchronization
Only the main orchestrator process should update state.json. Individual parallel agents
(Discovery 1A-1D, Researchers, Writers) must NOT directly modify state.json to avoid
race conditions. Parallel agents should only write to their designated partial result files
in partials/<phase>/<task_id>.json. The orchestrator aggregates these results and updates
state.json after all parallel agents complete.

// NOTE: This function should ONLY be called by the main orchestrator process,
// never by parallel sub-agents. Parallel agents use save_partial_result() instead.
function update_state(updates):
  current_state = Read(CONTEXT_DIR + "/state.json")
  parsed = JSON.parse(current_state)

  for key, value in updates:
    parsed[key] = value

  Write(CONTEXT_DIR + "/state.json", JSON.stringify(parsed, null, 2))

function estimate_repo_size(path):
  // Quick estimate: count source files
  files = count_files(path, ["*.ts", "*.js", "*.py", "*.go", "*.rs", "*.java"], excludeDir=["node_modules", ".git", "dist", "build"])
  // Assume ~200 LOC per file average
  return files * 200

function count_files(path, patterns, excludeDir):
  // Use localFindFiles MCP tool (mcp__octocode__localFindFiles)
  // Return count of matching files

Retry & Data Preservation Logic

CRITICAL: Never lose partial work. All agents support retry with state preservation.

const RETRY_CONFIG = {
  discovery_analysis: { max_attempts: 3, backoff_ms: 2000 },
  engineer_questions: { max_attempts: 3, backoff_ms: 2000 },
  research:           { max_attempts: 3, backoff_ms: 3000 },
  orchestrator:       { max_attempts: 3, backoff_ms: 2000 },
  documentation:      { max_attempts: 3, backoff_ms: 5000 },  // per writer
  qa:                 { max_attempts: 2, backoff_ms: 1000 }
}

// === RETRY WRAPPER FOR ALL AGENTS ===
function retry_agent(phase_name, agent_fn, options = {}):
  config = RETRY_CONFIG[phase_name]
  state = get_retry_state(phase_name)

  while (state.attempts < config.max_attempts):
    state.attempts++
    update_retry_state(phase_name, state)

    DISPLAY: `⟳ ${phase_name} attempt ${state.attempts}/${config.max_attempts}`

    try:
      result = agent_fn(options)

      // Success - clear retry state
      clear_retry_state(phase_name)
      return { success: true, result }

    catch (error):
      state.last_error = error.message
      update_retry_state(phase_name, state)

      DISPLAY: `⚠️ ${phase_name} failed: ${error.message}`

      if (state.attempts < config.max_attempts):
        DISPLAY: `   Retrying in ${config.backoff_ms}ms...`
        sleep(config.backoff_ms * state.attempts)  // Exponential backoff
      else:
        DISPLAY: `❌ ${phase_name} exhausted all ${config.max_attempts} attempts`
        return { success: false, error, attempts: state.attempts }

  return { success: false, error: state.last_error, attempts: state.attempts }

// === PARALLEL AGENT RETRY (for Discovery, Research, Writers) ===
function retry_parallel_agents(phase_name, agent_tasks, options = {}):
  config = RETRY_CONFIG[phase_name]
  results = {}
  failed_tasks = []

  // First attempt - run all in parallel
  parallel_results = Task_Parallel(agent_tasks)

  for (task_id, result) in parallel_results:
    if (result.success):
      results[task_id] = result
      save_partial_result(phase_name, task_id, result)
    else:
      failed_tasks.push({ id: task_id, task: agent_tasks[task_id], attempts: 1 })

  // Retry failed tasks individually
  for failed in failed_tasks:
    while (failed.attempts < config.max_attempts):
      failed.attempts++
      DISPLAY: `⟳ Retrying ${phase_name}/${failed.id} (attempt ${failed.attempts}/${config.max_attempts})`

      try:
        result = Task(failed.task)
        if (result.success):
          results[failed.id] = result
          save_partial_result(phase_name, failed.id, result)
          break
      catch (error):
        DISPLAY: `⚠️ ${phase_name}/${failed.id} failed: ${error.message}`
        if (failed.attempts < config.max_attempts):
          sleep(config.backoff_ms * failed.attempts)

    if (failed.attempts >= config.max_attempts && !results[failed.id]):
      DISPLAY: `❌ ${phase_name}/${failed.id} failed after ${config.max_attempts} attempts`
      // Load any partial result saved during attempts
      results[failed.id] = load_partial_result(phase_name, failed.id) || { success: false, partial: true }

  return results

// === PARTIAL RESULT PRESERVATION ===
// Uses atomic writes to prevent corruption from concurrent access
function save_partial_result(phase_name, task_id, result):
  partial_dir = CONTEXT_DIR + "/partials/" + phase_name
  mkdir_p(partial_dir)

  target_path = partial_dir + "/" + task_id + ".json"
  temp_path = partial_dir + "/" + task_id + ".json.tmp." + random_uuid()

  // Atomic write: write to temp file, then rename (rename is atomic on POSIX)
  Write(temp_path, JSON.stringify(result))
  rename(temp_path, target_path)  // Atomic operation

function load_partial_result(phase_name, task_id):
  path = CONTEXT_DIR + "/partials/" + phase_name + "/" + task_id + ".json"
  if (exists(path)):
    return JSON.parse(Read(path))
  return null

function load_all_partial_results(phase_name):
  partial_dir = CONTEXT_DIR + "/partials/" + phase_name
  if (!exists(partial_dir)):
    return {}
  files = list_files(partial_dir, "*.json")
  results = {}
  for file in files:
    task_id = file.replace(".json", "")
    results[task_id] = JSON.parse(Read(partial_dir + "/" + file))
  return results

// === RETRY STATE MANAGEMENT ===
function get_retry_state(phase_name):
  state = Read(CONTEXT_DIR + "/state.json")
  parsed = JSON.parse(state)
  return parsed.retry_state?.[phase_name] || { attempts: 0 }

function update_retry_state(phase_name, retry_state):
  update_state({
    retry_state: {
      ...current_state.retry_state,
      [phase_name]: retry_state
    }
  })

function clear_retry_state(phase_name):
  state = JSON.parse(Read(CONTEXT_DIR + "/state.json"))
  if (state.retry_state):
    delete state.retry_state[phase_name]
    Write(CONTEXT_DIR + "/state.json", JSON.stringify(state, null, 2))

Phase-Specific Retry Behavior

Phase Retry Strategy Partial Data Preserved
Discovery Retry failed sub-agents (1A-1D) individually partials/discovery/*.json
Questions Retry entire phase Previous questions.json kept until success
Research Retry failed batches only partials/research/batch-*.json
Orchestrator Retry entire phase Previous work-assignments.json kept
Writers Retry failed writers only partials/writers/writer-*.json + completed files
QA Retry once, then warn partials/qa/partial-results.json

Critical Data Protection Rules

// RULE 1: Never overwrite successful output until new output is validated
function safe_write_output(path, content):
  backup_path = path + ".backup"
  if (exists(path)):
    copy(path, backup_path)

  try:
    Write(path, content)
    validate_json(path)  // Ensure valid JSON
    delete(backup_path)  // Only delete backup after validation
  catch (error):
    // Restore from backup
    if (exists(backup_path)):
      copy(backup_path, path)
    throw error

// RULE 2: Aggregate partial results even on failure
// Uses file locking to prevent race conditions during aggregation
function aggregate_with_partials(phase_name, new_results):
  lock_file = CONTEXT_DIR + "/partials/" + phase_name + "/.aggregate.lock"

  // Acquire exclusive lock before aggregation
  lock_fd = acquire_file_lock(lock_file, timeout_ms=5000)
  if (!lock_fd):
    throw new Error("Failed to acquire lock for aggregation: " + phase_name)

  try:
    existing = load_all_partial_results(phase_name)
    merged = { ...existing, ...new_results }
    return merged
  finally:
    release_file_lock(lock_fd)
    delete(lock_file)

// RULE 3: Resume-aware execution
function should_skip_task(phase_name, task_id):
  partial = load_partial_result(phase_name, task_id)
  return partial?.success === true

Key Features

# Feature Description
1 True Parallel Execution Phases 1, 3, 5 spawn ALL agents in ONE message for concurrent execution
2 Single-Message Spawn ⚠️ Critical: Multiple Task calls in one response = true parallelism
3 Evidence-Based Research agent proves answers with code traces before writing
4 Engineer-Driven Questions Phase 2 generates comprehensive questions
5 Conflict-Free Writing Orchestrator assigns exclusive file ownership per writer
6 LSP-Powered Intelligent verification with semantic analysis
7 State Recovery Resume from any phase if interrupted
8 Unified Toolset All agents use octocode local + LSP tools
9 Dynamic Scaling Agent count scales based on question volume

Efficiency Maximization

Phase 1: 4 agents Γ— parallel = ~4x faster than sequential
Phase 3: N agents Γ— parallel = ~Nx faster than sequential
Phase 5: M agents Γ— parallel = ~Mx faster than sequential

Total speedup: Significant when spawn="single_message" is followed

Remember: spawn="single_message" phases MUST have all Task calls in ONE response.


# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.