Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add cosmix/loom --skill "grafana"
Install specific skill from multi-skill repository
# Description
|
# SKILL.md
name: grafana
description: |
Observability visualization with Grafana and LGTM stack. Dashboard design, panel configuration, alerting, variables/templating, and data sources.
USE WHEN: Creating Grafana dashboards, configuring panels and visualizations, writing LogQL/TraceQL queries, setting up Grafana data sources, configuring dashboard variables and templates, building Grafana alerts.
DO NOT USE: For writing PromQL queries (use /prometheus), for alerting rule strategy (use /prometheus), for general observability architecture (use senior-infrastructure-engineer).
TRIGGERS: grafana, dashboard, panel, visualization, logql, traceql, loki, tempo, mimir, data source, annotation, variable, template, row, stat, graph, table, heatmap, gauge, bar chart, pie chart, time series, logs panel, traces panel, LGTM stack.
triggers:
- grafana
- dashboard
- panel
- visualization
- logql
- traceql
- loki
- tempo
- mimir
- data source
- annotation
- variable
- template
- row
- stat
- graph
- table
- heatmap
- gauge
- bar chart
- pie chart
- time series
- logs panel
- traces panel
- LGTM stack
allowed-tools: Read, Grep, Glob, Edit, Write, Bash
Grafana and LGTM Stack Skill
Overview
The LGTM stack provides a complete observability solution with comprehensive visualization and dashboard capabilities:
- Loki: Log aggregation and querying (LogQL)
- Grafana: Visualization, dashboarding, alerting, and exploration
- Tempo: Distributed tracing (TraceQL)
- Mimir: Long-term metrics storage (Prometheus-compatible)
This skill covers setup, configuration, dashboard creation, panel design, querying, alerting, templating, and production observability best practices.
When to Use This Skill
Primary Use Cases
- Creating or modifying Grafana dashboards
- Designing panels and visualizations (graphs, stats, tables, heatmaps, etc.)
- Writing queries (PromQL, LogQL, TraceQL)
- Configuring data sources (Prometheus, Loki, Tempo, Mimir)
- Setting up alerting rules and notification policies
- Implementing dashboard variables and templates
- Dashboard provisioning and GitOps workflows
- Troubleshooting observability queries
- Analyzing application performance, errors, or system behavior
Who Uses This Skill
- senior-infrastructure-engineer (PRIMARY): Production observability setup, LGTM stack deployment, dashboard architecture
- software-engineer: Application dashboards, service metrics visualization
- devops-engineer: Infrastructure monitoring, deployment dashboards
LGTM Stack Components
Loki - Log Aggregation
Architecture - Loki
Horizontally scalable log aggregation inspired by Prometheus
- Indexes only metadata (labels), not log content
- Cost-effective storage with object stores (S3, GCS, etc.)
- LogQL query language similar to PromQL
Key Concepts - Loki
- Labels for indexing (low cardinality)
- Log streams identified by unique label sets
- Parsers: logfmt, JSON, regex, pattern
- Line filters and label filters
Grafana - Visualization
Features
- Multi-datasource dashboarding
- Panel types: Graph, Stat, Table, Heatmap, Bar Chart, Pie Chart, Gauge, Logs, Traces, Time Series
- Templating and variables for dynamic dashboards
- Alerting (unified alerting with contact points and notification policies)
- Dashboard provisioning and GitOps integration
- Role-based access control (RBAC)
- Explore mode for ad-hoc queries
- Annotations for event markers
- Dashboard folders and organization
Tempo - Distributed Tracing
Architecture - Tempo
Scalable distributed tracing backend
- Cost-effective trace storage
- TraceQL for trace querying
- Integration with logs and metrics (trace-to-logs, trace-to-metrics)
- OpenTelemetry compatible
Mimir - Metrics Storage
Architecture - Mimir
Horizontally scalable long-term Prometheus storage
- Multi-tenancy support
- Query federation
- High availability
- Prometheus remote_write compatible
Dashboard Design and Best Practices
Dashboard Organization Principles
- Hierarchy: Overview -> Service -> Component -> Deep Dive
- Golden Signals: Latency, Traffic, Errors, Saturation (RED/USE method)
- Variable-driven: Use templates for flexibility across environments
- Consistent Layouts: Grid alignment (24-column grid), logical top-to-bottom flow
- Performance: Limit queries, use query caching, appropriate time intervals
Panel Types and When to Use Them
| Panel Type | Use Case | Best For |
|---|---|---|
| Time Series / Graph | Trends over time | Request rates, latency, resource usage |
| Stat | Single metric value | Error rates, current values, percentage |
| Gauge | Progress toward limit | CPU usage, memory, disk space |
| Bar Gauge | Comparative values | Top N items, distribution |
| Table | Structured data | Service lists, error details, resource inventory |
| Pie Chart | Proportions | Traffic distribution, error breakdown |
| Heatmap | Distribution over time | Latency percentiles, request patterns |
| Logs | Log streams | Error investigation, debugging |
| Traces | Distributed tracing | Performance analysis, dependency mapping |
Panel Configuration Best Practices
Titles and Descriptions
- Clear, descriptive titles: Include units and metric context
- Tooltips: Add description fields for panel documentation
- Examples:
- Good: "P95 Latency (seconds) by Endpoint"
- Bad: "Latency"
Legends and Labels
- Show legends only when needed (multiple series)
- Use
{{label}}format for dynamic legend names - Place legends appropriately (bottom, right, or hidden)
- Sort by value when showing Top N
Axes and Units
- Always label axes with units
- Use appropriate unit formats (seconds, bytes, percent, requests/sec)
- Set reasonable min/max ranges to avoid misleading scales
- Use logarithmic scales for wide value ranges
Thresholds and Colors
- Use thresholds for visual cues (green/yellow/red)
- Standard threshold pattern:
- Green: Normal operation
- Yellow: Warning (action may be needed)
- Red: Critical (immediate attention required)
- Examples:
- Error rate: 0% (green), 1% (yellow), 5% (red)
- P95 latency: <1s (green), 1-3s (yellow), >3s (red)
Links and Drilldowns
- Link panels to related dashboards
- Use data links for context (logs, traces, related services)
- Create drill-down paths: Overview -> Service -> Component -> Details
- Link to runbooks for alert panels
Dashboard Variables and Templating
Dashboard variables enable reusable, dynamic dashboards that work across environments, services, and time ranges.
Variable Types
| Type | Purpose | Example |
|---|---|---|
| Query | Populate from data source | Namespaces, services, pods |
| Custom | Static list of options | Environments (prod/staging/dev) |
| Interval | Time interval selection | Auto-adjusted query intervals |
| Datasource | Switch between data sources | Multiple Prometheus instances |
| Constant | Hidden values for queries | Cluster name, region |
| Text box | Free-form input | Custom filters |
Common Variable Patterns
{
"templating": {
"list": [
{
"name": "datasource",
"type": "datasource",
"query": "prometheus",
"description": "Select Prometheus data source"
},
{
"name": "namespace",
"type": "query",
"datasource": "${datasource}",
"query": "label_values(kube_pod_info, namespace)",
"multi": true,
"includeAll": true,
"description": "Kubernetes namespace filter"
},
{
"name": "app",
"type": "query",
"datasource": "${datasource}",
"query": "label_values(kube_pod_info{namespace=~\"$namespace\"}, app)",
"multi": true,
"includeAll": true,
"description": "Application filter (depends on namespace)"
},
{
"name": "interval",
"type": "interval",
"auto": true,
"auto_count": 30,
"auto_min": "10s",
"options": ["1m", "5m", "15m", "30m", "1h", "6h", "12h", "1d"],
"description": "Query resolution interval"
},
{
"name": "environment",
"type": "custom",
"options": [
{ "text": "Production", "value": "prod" },
{ "text": "Staging", "value": "staging" },
{ "text": "Development", "value": "dev" }
],
"current": { "text": "Production", "value": "prod" }
}
]
}
}
Variable Usage in Queries
Variables are referenced with $variable_name or ${variable_name} syntax:
# Simple variable reference
rate(http_requests_total{namespace="$namespace"}[5m])
# Multi-select with regex match
rate(http_requests_total{namespace=~"$namespace"}[5m])
# Variable in legend
rate(http_requests_total{app="$app"}[5m]) by (method)
# Legend format: "{{method}}"
# Using interval variable for adaptive queries
rate(http_requests_total[$__interval])
# Chained variables (app depends on namespace)
rate(http_requests_total{namespace="$namespace", app="$app"}[5m])
Advanced Variable Techniques
Regex filtering:
{
"name": "pod",
"type": "query",
"query": "label_values(kube_pod_info{namespace=\"$namespace\"}, pod)",
"regex": "/^$app-.*/",
"description": "Filter pods by app prefix"
}
All option with custom value:
{
"name": "status",
"type": "custom",
"options": ["200", "404", "500"],
"includeAll": true,
"allValue": ".*",
"description": "HTTP status code filter"
}
Dependent variables (variable chain):
1. $datasource (datasource type)
2. $cluster (query: depends on datasource)
3. $namespace (query: depends on cluster)
4. $app (query: depends on namespace)
5. $pod (query: depends on app)
Annotations
Annotations display events as vertical markers on time series panels:
{
"annotations": {
"list": [
{
"name": "Deployments",
"datasource": "Prometheus",
"expr": "changes(kube_deployment_spec_replicas{namespace=\"$namespace\"}[5m])",
"tagKeys": "deployment,namespace",
"textFormat": "Deployment: {{deployment}}",
"iconColor": "blue"
},
{
"name": "Alerts",
"datasource": "Loki",
"expr": "{app=\"alertmanager\"} | json | alertname!=\"\"",
"textFormat": "Alert: {{alertname}}",
"iconColor": "red"
}
]
}
}
Dashboard Performance Optimization
Query Optimization
- Limit number of panels (< 15 per dashboard)
- Use appropriate time ranges (avoid queries over months)
- Leverage
$__intervalfor adaptive sampling - Avoid high-cardinality grouping (too many series)
- Use query caching when available
Panel Performance
- Set max data points to reasonable values
- Use instant queries for current-state panels
- Combine related metrics into single queries when possible
- Disable auto-refresh on heavy dashboards
Dashboard as Code and Provisioning
Dashboard Provisioning
Dashboard provisioning enables GitOps workflows and version-controlled dashboard definitions.
Provisioning Provider Configuration
File: /etc/grafana/provisioning/dashboards/dashboards.yaml
apiVersion: 1
providers:
- name: 'default'
orgId: 1
folder: ''
type: file
disableDeletion: false
updateIntervalSeconds: 10
allowUiUpdates: true
options:
path: /etc/grafana/provisioning/dashboards
- name: 'application'
orgId: 1
folder: 'Applications'
type: file
disableDeletion: true
editable: false
options:
path: /var/lib/grafana/dashboards/application
- name: 'infrastructure'
orgId: 1
folder: 'Infrastructure'
type: file
options:
path: /var/lib/grafana/dashboards/infrastructure
Dashboard JSON Structure
Complete dashboard JSON with metadata and provisioning:
{
"dashboard": {
"title": "Application Observability - ${app}",
"uid": "app-observability",
"tags": ["observability", "application"],
"timezone": "browser",
"editable": true,
"graphTooltip": 1,
"time": {
"from": "now-1h",
"to": "now"
},
"refresh": "30s",
"templating": { "list": [] },
"panels": [],
"links": []
},
"overwrite": true,
"folderId": null,
"folderUid": null
}
Kubernetes ConfigMap Provisioning
apiVersion: v1
kind: ConfigMap
metadata:
name: grafana-dashboards
namespace: monitoring
labels:
grafana_dashboard: "1"
data:
application-dashboard.json: |
{
"dashboard": {
"title": "Application Metrics",
"uid": "app-metrics",
"tags": ["application"],
"panels": []
}
}
Grafana Operator (CRD)
apiVersion: grafana.integreatly.org/v1beta1
kind: GrafanaDashboard
metadata:
name: application-observability
namespace: monitoring
spec:
instanceSelector:
matchLabels:
dashboards: "grafana"
json: |
{
"dashboard": {
"title": "Application Observability",
"panels": []
}
}
Data Source Provisioning
Loki Data Source
File: /etc/grafana/provisioning/datasources/loki.yaml
apiVersion: 1
datasources:
- name: Loki
type: loki
access: proxy
url: http://loki:3100
jsonData:
maxLines: 1000
derivedFields:
- datasourceUid: tempo_uid
matcherRegex: "trace_id=(\\w+)"
name: TraceID
url: "$${__value.raw}"
editable: false
Tempo Data Source
File: /etc/grafana/provisioning/datasources/tempo.yaml
apiVersion: 1
datasources:
- name: Tempo
type: tempo
access: proxy
url: http://tempo:3200
uid: tempo_uid
jsonData:
httpMethod: GET
tracesToLogs:
datasourceUid: loki_uid
tags: ["job", "instance", "pod", "namespace"]
mappedTags: [{ key: "service.name", value: "service" }]
spanStartTimeShift: "1h"
spanEndTimeShift: "1h"
tracesToMetrics:
datasourceUid: prometheus_uid
tags: [{ key: "service.name", value: "service" }]
serviceMap:
datasourceUid: prometheus_uid
nodeGraph:
enabled: true
editable: false
Mimir/Prometheus Data Source
File: /etc/grafana/provisioning/datasources/mimir.yaml
apiVersion: 1
datasources:
- name: Mimir
type: prometheus
access: proxy
url: http://mimir:8080/prometheus
uid: prometheus_uid
jsonData:
httpMethod: POST
exemplarTraceIdDestinations:
- datasourceUid: tempo_uid
name: trace_id
prometheusType: Mimir
prometheusVersion: 2.40.0
cacheLevel: "High"
incrementalQuerying: true
incrementalQueryOverlapWindow: 10m
editable: false
Alerting
Alert Rule Configuration
Grafana unified alerting supports multi-datasource alerts with flexible evaluation and routing.
Prometheus/Mimir Alert Rule
File: /etc/grafana/provisioning/alerting/rules.yaml
apiVersion: 1
groups:
- name: application_alerts
interval: 1m
rules:
- uid: error_rate_high
title: High Error Rate
condition: A
data:
- refId: A
queryType: ""
relativeTimeRange:
from: 300
to: 0
datasourceUid: prometheus_uid
model:
expr: |
sum(rate(http_requests_total{status=~"5.."}[5m]))
/
sum(rate(http_requests_total[5m]))
> 0.05
intervalMs: 1000
maxDataPoints: 43200
noDataState: NoData
execErrState: Error
for: 5m
annotations:
description: 'Error rate is {{ printf "%.2f" $values.A.Value }}% (threshold: 5%)'
summary: Application error rate is above threshold
runbook_url: https://wiki.company.com/runbooks/high-error-rate
labels:
severity: critical
team: platform
isPaused: false
- uid: high_latency
title: High P95 Latency
condition: A
data:
- refId: A
datasourceUid: prometheus_uid
model:
expr: |
histogram_quantile(0.95,
sum(rate(http_request_duration_seconds_bucket[5m])) by (le, endpoint)
) > 2
for: 10m
annotations:
description: "P95 latency is {{ $values.A.Value }}s on endpoint {{ $labels.endpoint }}"
runbook_url: https://wiki.company.com/runbooks/high-latency
labels:
severity: warning
Loki Alert Rule
apiVersion: 1
groups:
- name: log_based_alerts
interval: 1m
rules:
- uid: error_spike
title: Error Log Spike
condition: A
data:
- refId: A
queryType: ""
datasourceUid: loki_uid
model:
expr: |
sum(rate({app="api"} | json | level="error" [5m]))
> 10
for: 2m
annotations:
description: "Error log rate is {{ $values.A.Value }} logs/sec"
summary: Spike in error logs detected
labels:
severity: warning
- uid: critical_error_pattern
title: Critical Error Pattern Detected
condition: A
data:
- refId: A
datasourceUid: loki_uid
model:
expr: |
sum(count_over_time({app="api"}
|~ "OutOfMemoryError|StackOverflowError|FatalException" [5m]
)) > 0
for: 0m
annotations:
description: "Critical error pattern found in logs"
labels:
severity: critical
page: true
Contact Points and Notification Policies
File: /etc/grafana/provisioning/alerting/contactpoints.yaml
apiVersion: 1
contactPoints:
- orgId: 1
name: slack-critical
receivers:
- uid: slack_critical
type: slack
settings:
url: https://hooks.slack.com/services/YOUR/WEBHOOK/URL
title: "{{ .GroupLabels.alertname }}"
text: |
{{ range .Alerts }}
*Alert:* {{ .Labels.alertname }}
*Summary:* {{ .Annotations.summary }}
*Description:* {{ .Annotations.description }}
*Severity:* {{ .Labels.severity }}
{{ end }}
disableResolveMessage: false
- orgId: 1
name: pagerduty-oncall
receivers:
- uid: pagerduty_oncall
type: pagerduty
settings:
integrationKey: YOUR_INTEGRATION_KEY
severity: critical
class: infrastructure
- orgId: 1
name: email-team
receivers:
- uid: email_team
type: email
settings:
addresses: [email protected]
singleEmail: true
notificationPolicies:
- orgId: 1
receiver: slack-critical
group_by: ["alertname", "namespace"]
group_wait: 30s
group_interval: 5m
repeat_interval: 4h
routes:
- receiver: pagerduty-oncall
matchers:
- severity = critical
- page = true
group_wait: 10s
repeat_interval: 1h
continue: true
- receiver: email-team
matchers:
- severity = warning
- team = platform
group_interval: 10m
repeat_interval: 12h
LogQL Query Patterns
Basic Log Queries
Stream Selection
# Simple label matching
{namespace="production", app="api"}
# Regex matching
{app=~"api|web|worker"}
# Not equal
{env!="staging"}
# Multiple conditions
{namespace="production", app="api", level!="debug"}
Line Filters
# Contains
{app="api"} |= "error"
# Does not contain
{app="api"} != "debug"
# Regex match
{app="api"} |~ "error|exception|fatal"
# Case insensitive
{app="api"} |~ "(?i)error"
# Chaining filters
{app="api"} |= "error" != "timeout"
Parsing and Extraction
JSON Parsing
# Parse JSON logs
{app="api"} | json
# Extract specific fields
{app="api"} | json message="msg", level="severity"
# Filter on extracted field
{app="api"} | json | level="error"
# Nested JSON
{app="api"} | json | line_format "{{.response.status}}"
Logfmt Parsing
# Parse logfmt (key=value)
{app="api"} | logfmt
# Extract specific fields
{app="api"} | logfmt level, caller, msg
# Filter parsed fields
{app="api"} | logfmt | level="error"
Pattern Parsing
# Extract with pattern
{app="nginx"} | pattern `<ip> - - <_> "<method> <uri> <_>" <status> <_>`
# Filter on extracted values
{app="nginx"} | pattern `<_> <status> <_>` | status >= 400
# Complex pattern
{app="api"} | pattern `level=<level> msg="<msg>" duration=<duration>ms`
Aggregations and Metrics
Count Queries
# Count log lines over time
count_over_time({app="api"}[5m])
# Rate of logs
rate({app="api"}[5m])
# Errors per second
sum(rate({app="api"} |= "error" [5m])) by (namespace)
# Error ratio
sum(rate({app="api"} |= "error" [5m]))
/
sum(rate({app="api"}[5m]))
Extracted Metrics
# Average duration
avg_over_time({app="api"}
| logfmt
| unwrap duration [5m]) by (endpoint)
# P95 latency
quantile_over_time(0.95, {app="api"}
| regexp `duration=(?P<duration>[0-9.]+)ms`
| unwrap duration [5m]) by (method)
# Top 10 error messages
topk(10,
sum by (msg) (
count_over_time({app="api"}
| json
| level="error" [1h]
)
)
)
TraceQL Query Patterns
Basic Trace Queries
# Find traces by service
{ .service.name = "api" }
# HTTP status codes
{ .http.status_code = 500 }
# Combine conditions
{ .service.name = "api" && .http.status_code >= 400 }
# Duration filter
{ duration > 1s }
Advanced TraceQL
# Parent-child relationship
{ .service.name = "frontend" }
>> { .service.name = "backend" && .http.status_code = 500 }
# Descendant spans
{ .service.name = "api" }
>>+ { .db.system = "postgresql" && duration > 1s }
# Failed database queries
{ .service.name = "api" }
>> { .db.system = "postgresql" && status = "error" }
Complete Dashboard Examples
Application Observability Dashboard
{
"dashboard": {
"title": "Application Observability - ${app}",
"tags": ["observability", "application"],
"timezone": "browser",
"editable": true,
"graphTooltip": 1,
"time": {
"from": "now-1h",
"to": "now"
},
"templating": {
"list": [
{
"name": "app",
"type": "query",
"datasource": "Mimir",
"query": "label_values(up, app)",
"current": {
"selected": false,
"text": "api",
"value": "api"
}
},
{
"name": "namespace",
"type": "query",
"datasource": "Mimir",
"query": "label_values(up{app=\"$app\"}, namespace)",
"multi": true,
"includeAll": true
}
]
},
"panels": [
{
"id": 1,
"title": "Request Rate",
"type": "graph",
"datasource": "Mimir",
"targets": [
{
"expr": "sum(rate(http_requests_total{app=\"$app\", namespace=~\"$namespace\"}[$__rate_interval])) by (method, status)",
"legendFormat": "{{method}} - {{status}}"
}
],
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 0
},
"yaxes": [
{
"format": "reqps",
"label": "Requests/sec"
}
]
},
{
"id": 2,
"title": "P95 Latency",
"type": "graph",
"datasource": "Mimir",
"targets": [
{
"expr": "histogram_quantile(0.95, sum(rate(http_request_duration_seconds_bucket{app=\"$app\", namespace=~\"$namespace\"}[$__rate_interval])) by (le, endpoint))",
"legendFormat": "{{endpoint}}"
}
],
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 0
},
"yaxes": [
{
"format": "s",
"label": "Duration"
}
],
"thresholds": [
{
"value": 1,
"colorMode": "critical",
"fill": true,
"line": true,
"op": "gt"
}
]
},
{
"id": 3,
"title": "Error Rate",
"type": "graph",
"datasource": "Mimir",
"targets": [
{
"expr": "sum(rate(http_requests_total{app=\"$app\", namespace=~\"$namespace\", status=~\"5..\"}[$__rate_interval])) / sum(rate(http_requests_total{app=\"$app\", namespace=~\"$namespace\"}[$__rate_interval]))",
"legendFormat": "Error %"
}
],
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 8
},
"yaxes": [
{
"format": "percentunit",
"max": 1,
"min": 0
}
],
"alert": {
"conditions": [
{
"evaluator": {
"params": [0.01],
"type": "gt"
},
"operator": {
"type": "and"
},
"query": {
"params": ["A", "5m", "now"]
},
"reducer": {
"type": "avg"
},
"type": "query"
}
],
"frequency": "1m",
"handler": 1,
"name": "Error Rate Alert",
"noDataState": "no_data",
"notifications": []
}
},
{
"id": 4,
"title": "Recent Error Logs",
"type": "logs",
"datasource": "Loki",
"targets": [
{
"expr": "{app=\"$app\", namespace=~\"$namespace\"} | json | level=\"error\"",
"refId": "A"
}
],
"options": {
"showTime": true,
"showLabels": false,
"showCommonLabels": false,
"wrapLogMessage": true,
"dedupStrategy": "none",
"enableLogDetails": true
},
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 8
}
}
],
"links": [
{
"title": "Explore Logs",
"url": "/explore?left={\"datasource\":\"Loki\",\"queries\":[{\"expr\":\"{app=\\\"$app\\\",namespace=~\\\"$namespace\\\"}\"}]}",
"type": "link",
"icon": "doc"
},
{
"title": "Explore Traces",
"url": "/explore?left={\"datasource\":\"Tempo\",\"queries\":[{\"query\":\"{resource.service.name=\\\"$app\\\"}\",\"queryType\":\"traceql\"}]}",
"type": "link",
"icon": "gf-traces"
}
]
}
}
LGTM Stack Configuration
Loki Configuration
File: loki.yaml
auth_enabled: false
server:
http_listen_port: 3100
grpc_listen_port: 9096
log_level: info
common:
path_prefix: /loki
storage:
filesystem:
chunks_directory: /loki/chunks
rules_directory: /loki/rules
replication_factor: 1
ring:
kvstore:
store: inmemory
schema_config:
configs:
- from: 2024-01-01
store: tsdb
object_store: s3
schema: v13
index:
prefix: index_
period: 24h
storage_config:
aws:
s3: s3://us-east-1/my-loki-bucket
s3forcepathstyle: true
tsdb_shipper:
active_index_directory: /loki/tsdb-index
cache_location: /loki/tsdb-cache
shared_store: s3
limits_config:
retention_period: 744h # 31 days
ingestion_rate_mb: 10
ingestion_burst_size_mb: 20
max_query_series: 500
max_query_lookback: 30d
reject_old_samples: true
reject_old_samples_max_age: 168h
compactor:
working_directory: /loki/compactor
shared_store: s3
compaction_interval: 10m
retention_enabled: true
retention_delete_delay: 2h
Tempo Configuration
File: tempo.yaml
server:
http_listen_port: 3200
grpc_listen_port: 9096
distributor:
receivers:
otlp:
protocols:
http:
grpc:
jaeger:
protocols:
thrift_http:
grpc:
ingester:
max_block_duration: 5m
compactor:
compaction:
block_retention: 720h # 30 days
storage:
trace:
backend: s3
s3:
bucket: tempo-traces
endpoint: s3.amazonaws.com
region: us-east-1
wal:
path: /var/tempo/wal
metrics_generator:
registry:
external_labels:
source: tempo
cluster: primary
storage:
path: /var/tempo/generator/wal
remote_write:
- url: http://mimir:9009/api/v1/push
send_exemplars: true
Production Best Practices
Performance Optimization
Query Optimization
- Use label filters before line filters
- Limit time ranges for expensive queries
- Use
unwrapinstead of parsing when possible - Cache query results with query frontend
Dashboard Performance
- Limit number of panels (< 15 per dashboard)
- Use appropriate time intervals
- Avoid high-cardinality grouping
- Use
$__intervalfor adaptive sampling
Storage Optimization
- Configure retention policies
- Use compaction for Loki and Tempo
- Implement tiered storage (hot/warm/cold)
- Monitor storage growth
Security Best Practices
Authentication
- Enable auth (
auth_enabled: truein Loki/Tempo) - Use OAuth/LDAP for Grafana
- Implement multi-tenancy with org isolation
Authorization
- Configure RBAC in Grafana
- Limit datasource access by team
- Use folder permissions for dashboards
Network Security
- TLS for all components
- Network policies in Kubernetes
- Rate limiting at ingress
Troubleshooting
Common Issues
- High Cardinality: Too many unique label combinations
-
Solution: Reduce label dimensions, use log parsing instead
-
Query Timeouts: Complex queries on large datasets
-
Solution: Reduce time range, use aggregations, add query limits
-
Storage Growth: Unbounded retention
-
Solution: Configure retention policies, enable compaction
-
Missing Traces: Incomplete trace data
- Solution: Check sampling rates, verify instrumentation
Resources
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.