Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add dkyazzentwatwa/chatgpt-skills --skill "text-summarizer"
Install specific skill from multi-skill repository
# Description
Generate extractive summaries from long text documents. Control summary length, extract key sentences, and process multiple documents.
# SKILL.md
name: text-summarizer
description: Generate extractive summaries from long text documents. Control summary length, extract key sentences, and process multiple documents.
Text Summarizer
Create concise summaries from long text documents using extractive summarization. Identifies and extracts the most important sentences while preserving meaning.
Quick Start
from scripts.text_summarizer import TextSummarizer
# Summarize text
summarizer = TextSummarizer()
summary = summarizer.summarize(long_text, ratio=0.2) # 20% of original
print(summary)
# Summarize file
summary = summarizer.summarize_file("article.txt", num_sentences=5)
Features
- Extractive Summarization: Selects key sentences from original text
- Length Control: By ratio, sentence count, or word count
- Multiple Algorithms: TextRank, LSA, frequency-based
- Key Points: Extract bullet-point summaries
- Batch Processing: Summarize multiple documents
- Preserve Structure: Maintains sentence order option
API Reference
Initialization
summarizer = TextSummarizer(
method="textrank", # textrank, lsa, frequency
language="english"
)
Summarization
# By ratio (20% of original length)
summary = summarizer.summarize(text, ratio=0.2)
# By sentence count
summary = summarizer.summarize(text, num_sentences=5)
# By word count
summary = summarizer.summarize(text, max_words=100)
Key Points Extraction
# Get bullet points
points = summarizer.extract_key_points(text, num_points=5)
for point in points:
print(f"β’ {point}")
Batch Processing
# Summarize multiple texts
texts = [text1, text2, text3]
summaries = summarizer.summarize_batch(texts, ratio=0.2)
# Summarize files in directory
summaries = summarizer.summarize_directory("./articles/", ratio=0.3)
Options
# Preserve original sentence order
summary = summarizer.summarize(text, preserve_order=True)
# Include title/first sentence
summary = summarizer.summarize(text, include_first=True)
# Minimum sentence length filter
summarizer.min_sentence_length = 10
CLI Usage
# Summarize text file
python text_summarizer.py --input article.txt --ratio 0.2
# Specific sentence count
python text_summarizer.py --input article.txt --sentences 5
# Extract key points
python text_summarizer.py --input article.txt --points 5
# Batch process
python text_summarizer.py --input-dir ./docs --output-dir ./summaries --ratio 0.3
# Output to file
python text_summarizer.py --input article.txt --output summary.txt --ratio 0.2
CLI Arguments
| Argument | Description | Default |
|---|---|---|
--input |
Input file path | Required |
--output |
Output file path | stdout |
--input-dir |
Directory of files | - |
--output-dir |
Output directory | - |
--ratio |
Summary ratio (0.0-1.0) | 0.2 |
--sentences |
Number of sentences | - |
--words |
Maximum words | - |
--points |
Extract N key points | - |
--method |
Algorithm to use | textrank |
--preserve-order |
Keep sentence order | False |
Examples
News Article Summary
summarizer = TextSummarizer()
article = """
[Long news article text...]
"""
# Get a 3-sentence summary
summary = summarizer.summarize(article, num_sentences=3)
print("Summary:")
print(summary)
# Get key points
points = summarizer.extract_key_points(article, num_points=5)
print("\nKey Points:")
for i, point in enumerate(points, 1):
print(f"{i}. {point}")
Research Paper Abstract
summarizer = TextSummarizer(method="lsa")
paper = open("research_paper.txt").read()
# Create abstract-length summary
abstract = summarizer.summarize(paper, max_words=250)
print(abstract)
Meeting Notes Summary
summarizer = TextSummarizer()
notes = """
Meeting started at 2pm. John presented Q3 results showing 15% growth.
Sarah raised concerns about supply chain delays affecting Q4 projections.
The team discussed mitigation strategies including dual-sourcing.
Budget allocation for marketing was approved at $50k.
Next steps include vendor outreach by Friday.
Follow-up meeting scheduled for next Tuesday.
"""
summary = summarizer.summarize(notes, num_sentences=3)
points = summarizer.extract_key_points(notes, num_points=4)
print("Summary:", summary)
print("\nAction Items:")
for point in points:
print(f"β’ {point}")
Batch Document Summarization
summarizer = TextSummarizer()
import os
for filename in os.listdir("./documents"):
if filename.endswith(".txt"):
text = open(f"./documents/{filename}").read()
summary = summarizer.summarize(text, ratio=0.2)
with open(f"./summaries/{filename}", "w") as f:
f.write(summary)
print(f"Summarized: {filename}")
Algorithm Comparison
| Algorithm | Speed | Quality | Best For |
|---|---|---|---|
| TextRank | Medium | High | General text |
| LSA | Fast | Good | Technical docs |
| Frequency | Fast | Medium | Quick summaries |
Dependencies
nltk>=3.8.0
numpy>=1.24.0
scikit-learn>=1.2.0
Limitations
- Extractive only (doesn't paraphrase or generate new text)
- Works best with well-structured text (paragraphs, clear sentences)
- Very short texts may not summarize well
- Doesn't understand context deeply (may miss nuance)
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.