Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add erichowens/some_claude_skills --skill "crisis-detection-intervention-ai"
Install specific skill from multi-skill repository
# Description
Detect crisis signals in user content using NLP, mental health sentiment analysis, and safe intervention protocols. Implements suicide ideation detection, automated escalation, and crisis resource integration. Use for mental health apps, recovery platforms, support communities. Activate on "crisis detection", "suicide prevention", "mental health NLP", "intervention protocol". NOT for general sentiment analysis, medical diagnosis, or replacing professional help.
# SKILL.md
name: crisis-detection-intervention-ai
description: Detect crisis signals in user content using NLP, mental health sentiment analysis, and safe intervention protocols. Implements suicide ideation detection, automated escalation, and crisis resource integration. Use for mental health apps, recovery platforms, support communities. Activate on "crisis detection", "suicide prevention", "mental health NLP", "intervention protocol". NOT for general sentiment analysis, medical diagnosis, or replacing professional help.
allowed-tools: Read,Write,Edit,Bash(npm:*)
Crisis Detection & Intervention AI
Expert in detecting mental health crises and implementing safe, ethical intervention protocols.
β οΈ ETHICAL DISCLAIMER
This skill assists with crisis detection, NOT crisis response.
β
Appropriate uses:
- Flagging concerning content for human review
- Connecting users to professional resources
- Escalating to crisis counselors
- Providing immediate hotline information
β NOT a substitute for:
- Licensed therapists
- Emergency services (911)
- Medical diagnosis
- Professional mental health treatment
Always provide crisis hotlines: National Suicide Prevention Lifeline: 988
When to Use
β
Use for:
- Mental health journaling apps
- Recovery community platforms
- Support group monitoring
- Online therapy platforms
- Crisis text line integration
β NOT for:
- General sentiment analysis (use standard tools)
- Medical diagnosis (not qualified)
- Automated responses without human review
- Replacing professional crisis counselors
Quick Decision Tree
Detected concerning content?
βββ Immediate danger? β Escalate to crisis counselor + show 988
βββ Suicidal ideation? β Flag for review + show resources
βββ Substance relapse? β Connect to sponsor + resources
βββ Self-harm mention? β Gentle check-in + resources
βββ General distress? β Supportive response + resources
Technology Selection
NLP Models for Mental Health (2024)
| Model | Best For | Accuracy | Latency |
|---|---|---|---|
| MentalBERT | Mental health text | 89% | 50ms |
| GPT-4 + Few-shot | Crisis detection | 92% | 200ms |
| RoBERTa-Mental | Depression detection | 87% | 40ms |
| Custom Fine-tuned BERT | Domain-specific | 90%+ | 60ms |
Timeline:
- 2019: BERT fine-tuned for mental health
- 2021: MentalBERT released
- 2023: GPT-4 shows strong zero-shot crisis detection
- 2024: Specialized models for specific conditions
Common Anti-Patterns
Anti-Pattern 1: Using Generic Sentiment Analysis
Novice thinking: "Negative sentiment = crisis"
Problem: Mental health language is nuanced, context-dependent.
Wrong approach:
// β Generic sentiment misses mental health signals
const sentiment = analyzeSentiment(text);
if (sentiment.score < -0.5) {
alertCrisis(); // Too broad!
}
Why wrong: "I'm tired" vs "I'm tired of living" - different meanings, same sentiment.
Correct approach:
// β
Mental health-specific model
import { pipeline } from '@huggingface/transformers';
const detector = await pipeline('text-classification', 'mental/bert-base-uncased');
const result = await detector(text, {
labels: ['suicidal_ideation', 'self_harm', 'substance_relapse', 'safe']
});
if (result[0].label === 'suicidal_ideation' && result[0].score > 0.8) {
await escalateToCrisisCounselor({
text,
confidence: result[0].score,
timestamp: Date.now()
});
// IMMEDIATELY show crisis resources
showCrisisResources({
phone: '988',
text: 'Text "HELLO" to 741741',
chat: 'https://988lifeline.org/chat'
});
}
Timeline context:
- 2015: Rule-based keyword matching
- 2020: BERT fine-tuning for mental health
- 2024: Multi-label models with context understanding
Anti-Pattern 2: Automated Responses Without Human Review
Problem: AI cannot replace empathy, may escalate distress.
Wrong approach:
// β AI auto-responds to crisis
if (isCrisis(text)) {
await sendMessage(userId, "I'm concerned about you. Are you okay?");
}
Why wrong:
- Feels robotic, invalidating
- May increase distress
- No human judgment
Correct approach:
// β
Flag for human review, show resources
if (isCrisis(text)) {
// 1. Flag for counselor review
await flagForReview({
userId,
text,
severity: 'high',
detectedAt: Date.now(),
requiresImmediate: true
});
// 2. Notify on-call counselor
await notifyOnCallCounselor({
userId,
summary: 'Suicidal ideation detected',
urgency: 'immediate'
});
// 3. Show resources (no AI message)
await showInAppResources({
type: 'crisis_support',
resources: [
{ name: '988 Suicide & Crisis Lifeline', link: 'tel:988' },
{ name: 'Crisis Text Line', link: 'sms:741741' },
{ name: 'Chat Now', link: 'https://988lifeline.org/chat' }
]
});
// 4. DO NOT send automated "are you okay" message
}
Human review flow:
AI Detection β Flag β On-call counselor notified β Human reaches out
Anti-Pattern 3: Not Providing Immediate Resources
Problem: User in crisis needs help NOW, not later.
Wrong approach:
// β Just flags, no immediate help
if (isCrisis(text)) {
await logCrisisEvent(userId, text);
// User left with no resources
}
Correct approach:
// β
Immediate resources + escalation
if (isCrisis(text)) {
// Show resources IMMEDIATELY (blocking modal)
await showCrisisModal({
title: 'Resources Available',
resources: [
{
name: '988 Suicide & Crisis Lifeline',
description: 'Free, confidential support 24/7',
action: 'tel:988',
type: 'phone'
},
{
name: 'Crisis Text Line',
description: 'Text support with trained counselor',
action: 'sms:741741',
message: 'HELLO',
type: 'text'
},
{
name: 'Chat with counselor',
description: 'Online chat support',
action: 'https://988lifeline.org/chat',
type: 'web'
}
],
dismissible: true, // User can close, but resources shown first
analytics: { event: 'crisis_resources_shown', source: 'ai_detection' }
});
// Then flag for follow-up
await flagForReview({ userId, text, severity: 'high' });
}
Anti-Pattern 4: Storing Crisis Data Insecurely
Problem: Crisis content is extremely sensitive PHI.
Wrong approach:
// β Plain text storage
await db.logs.insert({
userId: user.id,
type: 'crisis',
content: text, // Stored in plain text!
timestamp: Date.now()
});
Why wrong: Data breach exposes most vulnerable moments.
Correct approach:
// β
Encrypted, access-logged, auto-deleted
import { encrypt, decrypt } from './encryption';
await db.crisisEvents.insert({
id: generateId(),
userId: hashUserId(user.id), // Hash, not plain ID
contentHash: hashContent(text), // For deduplication only
encryptedContent: encrypt(text, process.env.CRISIS_DATA_KEY),
detectedAt: Date.now(),
reviewedAt: null,
reviewedBy: null,
autoDeleteAt: Date.now() + (30 * 24 * 60 * 60 * 1000), // 30 days
accessLog: []
});
// Log all access
await logAccess({
eventId: crisisEvent.id,
accessedBy: counselorId,
accessedAt: Date.now(),
reason: 'Review for follow-up',
ipAddress: hashedIp
});
// Auto-delete after retention period
schedule.daily(() => {
db.crisisEvents.deleteMany({
autoDeleteAt: { $lt: Date.now() }
});
});
HIPAA Requirements:
- Encryption at rest and in transit
- Access logging
- Auto-deletion after retention period
- Minimum necessary access
Anti-Pattern 5: No Escalation Protocol
Problem: No clear path from detection to human intervention.
Wrong approach:
// β Flags crisis but no escalation process
if (isCrisis(text)) {
await db.flags.insert({ userId, text, flaggedAt: Date.now() });
// Now what? Who responds?
}
Correct approach:
// β
Clear escalation protocol
enum CrisisSeverity {
LOW = 'low', // Distress, no immediate danger
MEDIUM = 'medium', // Self-harm thoughts, no plan
HIGH = 'high', // Suicidal ideation with plan
IMMEDIATE = 'immediate' // Imminent danger
}
async function escalateCrisis(detection: CrisisDetection): Promise<void> {
const severity = assessSeverity(detection);
switch (severity) {
case CrisisSeverity.IMMEDIATE:
// Notify on-call counselor (push notification)
await notifyOnCall({
userId: detection.userId,
severity,
requiresResponse: 'immediate',
text: detection.text
});
// Send SMS to backup on-call if no response in 5 min
setTimeout(async () => {
if (!await hasResponded(detection.id)) {
await notifyBackupOnCall(detection);
}
}, 5 * 60 * 1000);
// Show 988 modal (blocking)
await show988Modal(detection.userId);
break;
case CrisisSeverity.HIGH:
// Notify on-call counselor (email + push)
await notifyOnCall({ severity, requiresResponse: '1 hour' });
// Show crisis resources
await showCrisisResources(detection.userId);
break;
case CrisisSeverity.MEDIUM:
// Add to review queue for next business day
await addToReviewQueue({ priority: 'high' });
// Suggest self-help resources
await suggestResources(detection.userId, 'coping_strategies');
break;
case CrisisSeverity.LOW:
// Add to review queue
await addToReviewQueue({ priority: 'normal' });
break;
}
// Always log for audit
await logEscalation({
detectionId: detection.id,
severity,
actions: ['notified_on_call', 'showed_resources'],
timestamp: Date.now()
});
}
Implementation Patterns
Pattern 1: Multi-Signal Detection
interface CrisisSignal {
type: 'suicidal_ideation' | 'self_harm' | 'substance_relapse' | 'severe_distress';
confidence: number;
evidence: string[];
}
async function detectCrisisSignals(text: string): Promise<CrisisSignal[]> {
const signals: CrisisSignal[] = [];
// Signal 1: NLP model
const nlpResult = await mentalHealthNLP(text);
if (nlpResult.score > 0.75) {
signals.push({
type: nlpResult.label,
confidence: nlpResult.score,
evidence: ['NLP model detection']
});
}
// Signal 2: Keyword matching (backup)
const keywords = detectKeywords(text);
if (keywords.length > 0) {
signals.push({
type: 'suicidal_ideation',
confidence: 0.6,
evidence: keywords
});
}
// Signal 3: Sentiment + context
const sentiment = await sentimentAnalysis(text);
const hasHopelessness = /no (hope|point|reason|future)/i.test(text);
if (sentiment.score < -0.8 && hasHopelessness) {
signals.push({
type: 'severe_distress',
confidence: 0.7,
evidence: ['Extreme negative sentiment + hopelessness language']
});
}
return signals;
}
Pattern 2: Safe Keyword Matching
const CRISIS_KEYWORDS = {
suicidal_ideation: [
/\b(kill|end|take)\s+(my|own)\s+life\b/i,
/\bsuicide\b/i,
/\bdon'?t\s+want\s+to\s+(live|be here|exist)\b/i,
/\bbetter off dead\b/i
],
self_harm: [
/\b(cut|cutting|hurt)\s+(myself|me)\b/i,
/\bself[- ]harm\b/i
],
substance_relapse: [
/\b(relapsed|used|drank)\s+(again|today)\b/i,
/\bback on\s+(drugs|alcohol)\b/i
]
};
function detectKeywords(text: string): string[] {
const matches: string[] = [];
for (const [type, patterns] of Object.entries(CRISIS_KEYWORDS)) {
for (const pattern of patterns) {
if (pattern.test(text)) {
matches.push(type);
}
}
}
return [...new Set(matches)]; // Deduplicate
}
Pattern 3: GPT-4 Few-Shot Detection
import Anthropic from '@anthropic-ai/sdk';
const client = new Anthropic({ apiKey: process.env.ANTHROPIC_API_KEY });
async function detectWithClaude(text: string): Promise<CrisisDetection> {
const response = await client.messages.create({
model: 'claude-3-5-sonnet-20241022',
max_tokens: 200,
messages: [{
role: 'user',
content: `You are a mental health crisis detection system. Analyze this text for crisis signals.
Text: "${text}"
Respond in JSON:
{
"is_crisis": boolean,
"severity": "none" | "low" | "medium" | "high" | "immediate",
"signals": ["suicidal_ideation" | "self_harm" | "substance_relapse"],
"confidence": 0.0-1.0,
"reasoning": "brief explanation"
}
Examples:
- "I'm thinking about ending it all" β { "is_crisis": true, "severity": "high", "signals": ["suicidal_ideation"], "confidence": 0.95 }
- "I relapsed today, feeling ashamed" β { "is_crisis": true, "severity": "medium", "signals": ["substance_relapse"], "confidence": 0.9 }
- "Had a tough day at work" β { "is_crisis": false, "severity": "none", "signals": [], "confidence": 0.95 }`
}]
});
const result = JSON.parse(response.content[0].text);
return result;
}
Production Checklist
β‘ Mental health-specific NLP model (not generic sentiment)
β‘ Human review required before automated action
β‘ Crisis resources shown IMMEDIATELY (988, text line)
β‘ Clear escalation protocol (severity-based)
β‘ Encrypted storage of crisis content
β‘ Access logging for all crisis data access
β‘ Auto-deletion after retention period (30 days)
β‘ On-call counselor notification system
β‘ Backup notification if no response
β‘ False positive tracking (improve model)
β‘ Regular model evaluation with experts
β‘ Ethics review board approval
When to Use vs Avoid
| Scenario | Appropriate? |
|---|---|
| Journaling app for recovery | β Yes - monitor for relapses |
| Support group chat | β Yes - flag concerning posts |
| Therapy platform messages | β Yes - assist therapists |
| Public social media | β No - privacy concerns |
| Replace human counselors | β Never - AI assists, doesn't replace |
| Medical diagnosis | β Never - not qualified |
References
/references/mental-health-nlp.md- NLP models for mental health/references/intervention-protocols.md- Evidence-based intervention strategies/references/crisis-resources.md- Hotlines, text lines, and support services
Scripts
scripts/crisis_detector.ts- Real-time crisis detection systemscripts/model_evaluator.ts- Evaluate detection accuracy with test cases
This skill guides: Crisis detection | Mental health NLP | Intervention protocols | Suicide prevention | HIPAA compliance | Ethical AI
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.