Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add eugenepyvovarov/mcpbundler-agent-skills-marketplace --skill "hf-cli"
Install specific skill from multi-skill repository
# Description
Execute Hugging Face Hub operations using the `hf` CLI. Use when the user needs to download models/datasets/spaces, upload files to Hub repositories, create repos, manage local cache, or run compute jobs on HF infrastructure. Covers authentication, file transfers, repository creation, cache operations, and cloud compute.
# SKILL.md
name: hf-cli
description: Execute Hugging Face Hub operations using the hf CLI. Use when the user needs to download models/datasets/spaces, upload files to Hub repositories, create repos, manage local cache, or run compute jobs on HF infrastructure. Covers authentication, file transfers, repository creation, cache operations, and cloud compute.
Hugging Face CLI
The hf CLI provides direct terminal access to the Hugging Face Hub for downloading, uploading, and managing repositories, cache, and compute resources.
Quick Command Reference
| Task | Command |
|---|---|
| Login | hf auth login |
| Download model | hf download <repo_id> |
| Download to folder | hf download <repo_id> --local-dir ./path |
| Upload folder | hf upload <repo_id> . . |
| Create repo | hf repo create <name> |
| Create tag | hf repo tag create <repo_id> <tag> |
| Delete files | hf repo-files delete <repo_id> <files> |
| List cache | hf cache ls |
| Remove from cache | hf cache rm <repo_or_revision> |
| List endpoints | hf endpoints ls |
| Run GPU job | hf jobs run --flavor a10g-small <image> <cmd> |
| Environment info | hf env |
Core Commands
Authentication
hf auth login # Interactive login
hf auth login --token $HF_TOKEN # Non-interactive
hf auth whoami # Check current user
hf auth list # List stored tokens
hf auth switch # Switch between tokens
hf auth logout # Log out
Download
hf download <repo_id> # Full repo to cache
hf download <repo_id> file.safetensors # Specific file
hf download <repo_id> --local-dir ./models # To local directory
hf download <repo_id> --include "*.safetensors" # Filter by pattern
hf download <repo_id> --repo-type dataset # Dataset
hf download <repo_id> --revision v1.0 # Specific version
Upload
hf upload <repo_id> . . # Current dir to root
hf upload <repo_id> ./models /weights # Folder to path
hf upload <repo_id> model.safetensors # Single file
hf upload <repo_id> . . --repo-type dataset # Dataset
hf upload <repo_id> . . --create-pr # Create PR
hf upload <repo_id> . . --commit-message="msg" # Custom message
Repository Management
hf repo create <name> # Create model repo
hf repo create <name> --repo-type dataset # Create dataset
hf repo create <name> --private # Private repo
hf repo create <name> --repo-type space --space_sdk gradio # Gradio space
hf repo delete <repo_id> # Delete repo
hf repo move <from_id> <to_id> # Move repo to new namespace
hf repo settings <repo_id> --private true # Update repo settings
hf repo list --repo-type model # List repos
hf repo branch create <repo_id> release-v1 # Create branch
hf repo branch delete <repo_id> release-v1 # Delete branch
hf repo tag create <repo_id> v1.0 # Create tag
hf repo tag list <repo_id> # List tags
hf repo tag delete <repo_id> v1.0 # Delete tag
Delete Files from Repo
hf repo-files delete <repo_id> folder/ # Delete folder
hf repo-files delete <repo_id> "*.txt" # Delete with pattern
Cache Management
hf cache ls # List cached repos
hf cache ls --revisions # Include individual revisions
hf cache rm model/gpt2 # Remove cached repo
hf cache rm <revision_hash> # Remove cached revision
hf cache prune # Remove detached revisions
hf cache verify gpt2 # Verify checksums from cache
Jobs (Cloud Compute)
hf jobs run python:3.12 python script.py # Run on CPU
hf jobs run --flavor a10g-small <image> <cmd> # Run on GPU
hf jobs run --secrets HF_TOKEN <image> <cmd> # With HF token
hf jobs ps # List jobs
hf jobs logs <job_id> # View logs
hf jobs cancel <job_id> # Cancel job
Inference Endpoints
hf endpoints ls # List endpoints
hf endpoints deploy my-endpoint \
--repo openai/gpt-oss-120b \
--framework vllm \
--accelerator gpu \
--instance-size x4 \
--instance-type nvidia-a10g \
--region us-east-1 \
--vendor aws
hf endpoints describe my-endpoint # Show endpoint details
hf endpoints pause my-endpoint # Pause endpoint
hf endpoints resume my-endpoint # Resume endpoint
hf endpoints scale-to-zero my-endpoint # Scale to zero
hf endpoints delete my-endpoint --yes # Delete endpoint
GPU Flavors: cpu-basic, cpu-upgrade, cpu-xl, t4-small, t4-medium, l4x1, l4x4, l40sx1, l40sx4, l40sx8, a10g-small, a10g-large, a10g-largex2, a10g-largex4, a100-large, h100, h100x8
Common Patterns
Download and Use Model Locally
# Download to local directory for deployment
hf download meta-llama/Llama-3.2-1B-Instruct --local-dir ./model
# Or use cache and get path
MODEL_PATH=$(hf download meta-llama/Llama-3.2-1B-Instruct --quiet)
Publish Model/Dataset
hf repo create my-username/my-model --private
hf upload my-username/my-model ./output . --commit-message="Initial release"
hf repo tag create my-username/my-model v1.0
Sync Space with Local
hf upload my-username/my-space . . --repo-type space \
--exclude="logs/*" --delete="*" --commit-message="Sync"
Check Cache Usage
hf cache ls # See all cached repos and sizes
hf cache rm model/gpt2 # Remove a repo from cache
Key Options
--repo-type:model(default),dataset,space--revision: Branch, tag, or commit hash--token: Override authentication--quiet: Output only essential info (paths/URLs)
References
- Complete command reference: See references/commands.md
- Workflow examples: See references/examples.md
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.