halay08

daily-news-report

0
0
# Install this skill:
npx skills add halay08/fullstack-agent-skills --skill "daily-news-report"

Install specific skill from multi-skill repository

# Description

Scrapes content based on a preset URL list, filters high-quality technical information, and generates daily Markdown reports.

# SKILL.md


name: daily-news-report
description: Scrapes content based on a preset URL list, filters high-quality technical information, and generates daily Markdown reports.
argument-hint: [optional: date]
disable-model-invocation: false
user-invocable: true
allowed-tools: Task, WebFetch, Read, Write, Bash(mkdir), Bash(date), Bash(ls), mcp__chrome-devtools__


Daily News Report v3.0

Architecture Upgrade: Main Agent Orchestration + SubAgent Execution + Browser Scraping + Smart Caching

Core Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                        Main Agent (Orchestrator)                    β”‚
β”‚  Role: Scheduling, Monitoring, Evaluation, Decision, Aggregation    β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                                      β”‚
β”‚   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”‚
β”‚   β”‚ 1. Init     β”‚ β†’ β”‚ 2. Dispatch β”‚ β†’ β”‚ 3. Monitor  β”‚ β†’ β”‚ 4. Evaluate β”‚     β”‚
β”‚   β”‚ Read Config β”‚    β”‚ Assign Tasksβ”‚    β”‚ Collect Res β”‚    β”‚ Filter/Sort β”‚     β”‚
β”‚   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β”‚
β”‚         β”‚                  β”‚                  β”‚                  β”‚           β”‚
β”‚         β–Ό                  β–Ό                  β–Ό                  β–Ό           β”‚
β”‚   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”‚
β”‚   β”‚ 5. Decision β”‚ ← β”‚ Enough 20?  β”‚    β”‚ 6. Generate β”‚ β†’ β”‚ 7. Update   β”‚     β”‚
β”‚   β”‚ Cont/Stop   β”‚    β”‚ Y/N         β”‚    β”‚ Report File β”‚    β”‚ Cache Stats β”‚     β”‚
β”‚   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β”‚
β”‚                                                                      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         ↓ Dispatch                          ↑ Return Results
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                        SubAgent Execution Layer                      β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                                      β”‚
β”‚   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”              β”‚
β”‚   β”‚ Worker A    β”‚   β”‚ Worker B    β”‚   β”‚ Browser     β”‚              β”‚
β”‚   β”‚ (WebFetch)  β”‚   β”‚ (WebFetch)  β”‚   β”‚ (Headless)  β”‚              β”‚
β”‚   β”‚ Tier1 Batch β”‚   β”‚ Tier2 Batch β”‚   β”‚ JS Render   β”‚              β”‚
β”‚   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜              β”‚
β”‚         ↓                 ↓                 ↓                        β”‚
β”‚   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚   β”‚                    Structured Result Return                 β”‚   β”‚
β”‚   β”‚  { status, data: [...], errors: [...], metadata: {...} }    β”‚   β”‚
β”‚   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β”‚                                                                      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Configuration Files

This skill uses the following configuration files:

File Purpose
sources.json Source configuration, priorities, scrape methods
cache.json Cached data, historical stats, deduplication fingerprints

Execution Process Details

Phase 1: Initialization

Steps:
  1. Determine date (user argument or current date)
  2. Read sources.json for source configurations
  3. Read cache.json for historical data
  4. Create output directory NewsReport/
  5. Check if a partial report exists for today (append mode)

Phase 2: Dispatch SubAgents

Strategy: Parallel dispatch, batch execution, early stopping mechanism

Wave 1 (Parallel):
  - Worker A: Tier1 Batch A (HN, HuggingFace Papers)
  - Worker B: Tier1 Batch B (OneUsefulThing, Paul Graham)

Wait for results β†’ Evaluate count

If < 15 high-quality items:
  Wave 2 (Parallel):
    - Worker C: Tier2 Batch A (James Clear, FS Blog)
    - Worker D: Tier2 Batch B (HackerNoon, Scott Young)

If still < 20 items:
  Wave 3 (Browser):
    - Browser Worker: ProductHunt, Latent Space (Require JS rendering)

Phase 3: SubAgent Task Format

Task format received by each SubAgent:

task: fetch_and_extract
sources:
  - id: hn
    url: https://news.ycombinator.com
    extract: top_10
  - id: hf_papers
    url: https://huggingface.co/papers
    extract: top_voted

output_schema:
  items:
    - source_id: string      # Source Identifier
      title: string          # Title
      summary: string        # 2-4 sentence summary
      key_points: string[]   # Max 3 key points
      url: string            # Original URL
      keywords: string[]     # Keywords
      quality_score: 1-5     # Quality Score

constraints:
  filter: "Cutting-edge Tech/Deep Tech/Productivity/Practical Info"
  exclude: "General Science/Marketing Puff/Overly Academic/Job Posts"
  max_items_per_source: 10
  skip_on_error: true

return_format: JSON

Phase 4: Main Agent Monitoring & Feedback

Main Agent Responsibilities:

Monitoring:
  - Check SubAgent return status (success/partial/failed)
  - Count collected items
  - Record success rate per source

Feedback Loop:
  - If a SubAgent fails, decide whether to retry or skip
  - If a source fails persistently, mark as disabled
  - Dynamically adjust source selection for subsequent batches

Decision:
  - Items >= 25 AND HighQuality >= 20 β†’ Stop scraping
  - Items < 15 β†’ Continue to next batch
  - All batches done but < 20 β†’ Generate with available content (Quality over Quantity)

Phase 5: Evaluation & Filtering

Deduplication:
  - Exact URL match
  - Title similarity (>80% considered duplicate)
  - Check cache.json to avoid history duplicates

Score Calibration:
  - Unify scoring standards across SubAgents
  - Adjust weights based on source credibility
  - Bonus points for manually curated high-quality sources

Sorting:
  - Descending order by quality_score
  - Sort by source priority if scores are equal
  - Take Top 20

Phase 6: Browser Scraping (MCP Chrome DevTools)

For pages requiring JS rendering, use a headless browser:

Process:
  1. Call mcp__chrome-devtools__new_page to open page
  2. Call mcp__chrome-devtools__wait_for to wait for content load
  3. Call mcp__chrome-devtools__take_snapshot to get page structure
  4. Parse snapshot to extract required content
  5. Call mcp__chrome-devtools__close_page to close page

Applicable Scenarios:
  - ProductHunt (403 on WebFetch)
  - Latent Space (Substack JS rendering)
  - Other SPA applications

Phase 7: Generate Report

Output:
  - Directory: NewsReport/
  - Filename: YYYY-MM-DD-news-report.md
  - Format: Standard Markdown

Content Structure:
  - Title + Date
  - Statistical Summary (Source count, items collected)
  - 20 High-Quality Items (Template based)
  - Generation Info (Version, Timestamps)

Phase 8: Update Cache

Update cache.json:
  - last_run: Record this run info
  - source_stats: Update stats per source
  - url_cache: Add processed URLs
  - content_hashes: Add content fingerprints
  - article_history: Record included articles

SubAgent Call Examples

Using general-purpose Agent

Since custom agents require session restart to be discovered, use general-purpose and inject worker prompts:

Task Call:
  subagent_type: general-purpose
  model: haiku
  prompt: |
    You are a stateless execution unit. Only do the assigned task and return structured JSON.

    Task: Scrape the following URLs and extract content

    URLs:
    - https://news.ycombinator.com (Extract Top 10)
    - https://huggingface.co/papers (Extract top voted papers)

    Output Format:
    {
      "status": "success" | "partial" | "failed",
      "data": [
        {
          "source_id": "hn",
          "title": "...",
          "summary": "...",
          "key_points": ["...", "...", "..."],
          "url": "...",
          "keywords": ["...", "..."],
          "quality_score": 4
        }
      ],
      "errors": [],
      "metadata": { "processed": 2, "failed": 0 }
    }

    Filter Criteria:
    - Keep: Cutting-edge Tech/Deep Tech/Productivity/Practical Info
    - Exclude: General Science/Marketing Puff/Overly Academic/Job Posts

    Return JSON directly, no explanation.

Using worker Agent (Requires session restart)

Task Call:
  subagent_type: worker
  prompt: |
    task: fetch_and_extract
    input:
      urls:
        - https://news.ycombinator.com
        - https://huggingface.co/papers
    output_schema:
      - source_id: string
      - title: string
      - summary: string
      - key_points: string[]
      - url: string
      - keywords: string[]
      - quality_score: 1-5
    constraints:
      filter: Cutting-edge Tech/Deep Tech/Productivity/Practical Info
      exclude: General Science/Marketing Puff/Overly Academic

Output Template

# Daily News Report (YYYY-MM-DD)

> Curated from N sources today, containing 20 high-quality items
> Generation Time: X min | Version: v3.0
>
> **Warning**: Sub-agent 'worker' not detected. Running in generic mode (Serial Execution). Performance might be degraded.

---

## 1. Title

- **Summary**: 2-4 lines overview
- **Key Points**:
  1. Point one
  2. Point two
  3. Point three
- **Source**: [Link](URL)
- **Keywords**: `keyword1` `keyword2` `keyword3`
- **Score**: ⭐⭐⭐⭐⭐ (5/5)

---

## 2. Title
...

---

*Generated by Daily News Report v3.0*
*Sources: HN, HuggingFace, OneUsefulThing, ...*

Constraints & Principles

  1. Quality over Quantity: Low-quality content does not enter the report.
  2. Early Stop: Stop scraping once 20 high-quality items are reached.
  3. Parallel First: SubAgents in the same batch execute in parallel.
  4. Fault Tolerance: Failure of a single source does not affect the whole process.
  5. Cache Reuse: Avoid re-scraping the same content.
  6. Main Agent Control: All decisions are made by the Main Agent.
  7. Fallback Awareness: Detect sub-agent availability, gracefully degrade if unavailable.

Expected Performance

Scenario Expected Time Note
Optimal ~2 mins Tier1 sufficient, no browser needed
Normal ~3-4 mins Requires Tier2 supplement
Browser Needed ~5-6 mins Includes JS rendered pages

Error Handling

Error Type Handling
SubAgent Timeout Log error, continue to next
Source 403/404 Mark disabled, update sources.json
Extraction Failed Return raw content, Main Agent decides
Browser Crash Skip source, log entry

Compatibility & Fallback

To ensure usability across different Agent environments, the following checks must be performed:

  1. Environment Check:

    • In Phase 1 initialization, attempt to detect if worker sub-agent exists.
    • If not exists (or plugin not installed), automatically switch to Serial Execution Mode.
  2. Serial Execution Mode:

    • Do not use parallel block.
    • Main Agent executes scraping tasks for each source sequentially.
    • Slower, but guarantees basic functionality.
  3. User Alert:

    • MUST include a clear warning in the generated report header indicating the current degraded mode.

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.