Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add hyperb1iss/hyperskills --skill "ai"
Install specific skill from multi-skill repository
# Description
Use this skill when building AI features, integrating LLMs, implementing RAG, working with embeddings, deploying ML models, or doing data science. Activates on mentions of OpenAI, Anthropic, Claude, GPT, LLM, RAG, embeddings, vector database, Pinecone, Qdrant, LangChain, LlamaIndex, DSPy, MLflow, fine-tuning, LoRA, QLoRA, model deployment, ML pipeline, feature engineering, or machine learning.
# SKILL.md
name: ai
description: Use this skill when building AI features, integrating LLMs, implementing RAG, working with embeddings, deploying ML models, or doing data science. Activates on mentions of OpenAI, Anthropic, Claude, GPT, LLM, RAG, embeddings, vector database, Pinecone, Qdrant, LangChain, LlamaIndex, DSPy, MLflow, fine-tuning, LoRA, QLoRA, model deployment, ML pipeline, feature engineering, or machine learning.
AI/ML Engineering
Build production AI systems with modern patterns and tools.
Quick Reference
The 2026 AI Stack
| Layer | Tool | Purpose |
|---|---|---|
| Prompting | DSPy | Programmatic prompt optimization |
| Orchestration | LangGraph | Stateful multi-agent workflows |
| RAG | LlamaIndex | Document ingestion and retrieval |
| Vectors | Qdrant / Pinecone | Embedding storage and search |
| Evaluation | RAGAS | RAG quality metrics |
| Experiment Tracking | MLflow / W&B | Logging, versioning, comparison |
| Serving | BentoML / vLLM | Model deployment |
| Protocol | MCP | Tool and context integration |
DSPy: Programmatic Prompting
Manual prompts are dead. DSPy treats prompts as optimizable code:
import dspy
class QA(dspy.Signature):
"""Answer questions with short factoid answers."""
question = dspy.InputField()
answer = dspy.OutputField(desc="1-5 words")
# Create module
qa = dspy.Predict(QA)
# Use it
result = qa(question="What is the capital of France?")
print(result.answer) # "Paris"
Optimize with real data:
from dspy.teleprompt import BootstrapFewShot
optimizer = BootstrapFewShot(metric=exact_match)
optimized_qa = optimizer.compile(qa, trainset=train_data)
RAG Architecture (Production)
Query β Rewrite β Hybrid Retrieval β Rerank β Generate β Cite
β β β
v v v
Query expansion Dense + BM25 Cross-encoder
LlamaIndex + LangGraph Pattern:
from llama_index.core import VectorStoreIndex
from langgraph.graph import StateGraph
# Data layer (LlamaIndex)
index = VectorStoreIndex.from_documents(docs)
query_engine = index.as_query_engine()
# Control layer (LangGraph)
def retrieve(state):
response = query_engine.query(state["question"])
return {"context": response.response, "sources": response.source_nodes}
graph = StateGraph(State)
graph.add_node("retrieve", retrieve)
graph.add_node("generate", generate_answer)
graph.add_edge("retrieve", "generate")
MCP Integration
Model Context Protocol is the standard for tool integration:
from mcp import Server, Tool
server = Server("my-tools")
@server.tool()
async def search_docs(query: str) -> str:
"""Search the knowledge base."""
results = await vector_store.search(query)
return format_results(results)
Embeddings (2026)
| Model | Dimensions | Best For |
|---|---|---|
| text-embedding-3-large | 3072 | General purpose |
| BGE-M3 | 1024 | Multilingual RAG |
| Qwen3-Embedding | Flexible | Custom domains |
Fine-Tuning with LoRA/QLoRA
from peft import LoraConfig, get_peft_model
config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.05,
)
model = get_peft_model(base_model, config)
# Train on ~24GB VRAM (QLoRA on RTX 4090)
MLOps Pipeline
# MLflow tracking
mlflow.set_experiment("rag-v2")
with mlflow.start_run():
mlflow.log_params({"chunk_size": 512, "model": "gpt-4"})
mlflow.log_metrics({"faithfulness": 0.92, "relevance": 0.88})
mlflow.log_artifact("prompts/qa.txt")
Evaluation with RAGAS
from ragas import evaluate
from ragas.metrics import faithfulness, answer_relevancy, context_precision
results = evaluate(
dataset,
metrics=[faithfulness, answer_relevancy, context_precision],
)
print(results) # {'faithfulness': 0.92, 'answer_relevancy': 0.88, ...}
Vector Database Selection
| DB | Best For | Pricing |
|---|---|---|
| Qdrant | Self-hosted, filtering | 1GB free forever |
| Pinecone | Managed, zero-ops | Free tier available |
| Weaviate | Knowledge graphs | 14-day trial |
| Milvus | Billion-scale | Self-hosted |
Agents
- ai-engineer - LLM integration, RAG, MCP, production AI
- mlops-engineer - Model deployment, monitoring, pipelines
- data-scientist - Analysis, modeling, experimentation
- ml-researcher - Cutting-edge architectures, paper implementation
- cv-engineer - Computer vision, VLMs, image processing
Deep Dives
- references/dspy-guide.md
- references/rag-patterns.md
- references/mcp-integration.md
- references/fine-tuning.md
- references/evaluation.md
Examples
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.