Implement GitOps workflows with ArgoCD and Flux for automated, declarative Kubernetes...
npx skills add hyperb1iss/hyperskills --skill "platform"
Install specific skill from multi-skill repository
# Description
Use this skill when working on infrastructure, DevOps, CI/CD, Kubernetes, cloud deployment, observability, or cost optimization. Activates on mentions of Kubernetes, Docker, Terraform, Pulumi, OpenTofu, GitOps, Argo CD, Flux, CI/CD, GitHub Actions, observability, OpenTelemetry, Prometheus, Grafana, AWS, GCP, Azure, infrastructure as code, platform engineering, FinOps, or cloud costs.
# SKILL.md
name: platform
description: Use this skill when working on infrastructure, DevOps, CI/CD, Kubernetes, cloud deployment, observability, or cost optimization. Activates on mentions of Kubernetes, Docker, Terraform, Pulumi, OpenTofu, GitOps, Argo CD, Flux, CI/CD, GitHub Actions, observability, OpenTelemetry, Prometheus, Grafana, AWS, GCP, Azure, infrastructure as code, platform engineering, FinOps, or cloud costs.
Platform Engineering
Build reliable, observable, cost-efficient infrastructure.
Quick Reference
The 2026 Platform Stack
| Layer | Tool | Purpose |
|---|---|---|
| IaC | OpenTofu / Pulumi | Infrastructure definition |
| GitOps | Argo CD / Flux | Continuous deployment |
| Control Plane | Crossplane | Kubernetes-native infra |
| Observability | OpenTelemetry | Unified telemetry |
| Service Mesh | Istio Ambient / Cilium | mTLS, traffic management |
| Cost | FinOps Framework | Cloud optimization |
Infrastructure as Code
OpenTofu (Terraform-compatible, open-source):
resource "aws_instance" "web" {
ami = data.aws_ami.ubuntu.id
instance_type = "t3.micro"
tags = {
Name = "web-server"
Environment = "production"
}
}
Pulumi (Real programming languages):
import * as aws from "@pulumi/aws";
const server = new aws.ec2.Instance("web", {
ami: "ami-0c55b159cbfafe1f0",
instanceType: "t3.micro",
tags: { Name: "web-server" },
});
export const publicIp = server.publicIp;
GitOps with Argo CD
# Application manifest
apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
name: my-app
namespace: argocd
spec:
project: default
source:
repoURL: https://github.com/org/repo
targetRevision: HEAD
path: k8s/overlays/production
destination:
server: https://kubernetes.default.svc
namespace: production
syncPolicy:
automated:
prune: true
selfHeal: true
Kubernetes Patterns
Gateway API (replacing Ingress):
apiVersion: gateway.networking.k8s.io/v1
kind: HTTPRoute
metadata:
name: api-route
spec:
parentRefs:
- name: main-gateway
rules:
- matches:
- path:
type: PathPrefix
value: /api
backendRefs:
- name: api-service
port: 8080
Istio Ambient Mode (sidecar-less service mesh):
apiVersion: v1
kind: Namespace
metadata:
name: production
labels:
istio.io/dataplane-mode: ambient # Enable ambient mesh
OpenTelemetry Setup
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter
# Initialize
provider = TracerProvider()
processor = BatchSpanProcessor(OTLPSpanExporter(endpoint="http://collector:4317"))
provider.add_span_processor(processor)
trace.set_tracer_provider(provider)
# Use
tracer = trace.get_tracer(__name__)
with tracer.start_as_current_span("my-operation"):
do_work()
CI/CD Pipeline (GitHub Actions)
name: Deploy
on:
push:
branches: [main]
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Build and push
uses: docker/build-push-action@v5
with:
push: true
tags: ghcr.io/${{ github.repository }}:${{ github.sha }}
- name: Update manifests
run: |
cd k8s/overlays/production
kustomize edit set image app=ghcr.io/${{ github.repository }}:${{ github.sha }}
git commit -am "Deploy ${{ github.sha }}"
git push
FinOps Framework
Phase 1: INFORM (visibility)
- Tag everything:
team,environment,cost-center - Use cloud cost explorers
- Target: 95%+ cost allocation accuracy
Phase 2: OPTIMIZE (action)
- Rightsize instances (most are overprovisioned)
- Use spot/preemptible for stateless workloads
- Reserved instances for baseline capacity
- Target: 20-30% cost reduction
Phase 3: OPERATE (governance)
- Budget alerts at 80% threshold
- Cost metrics in CI/CD gates
- Regular FinOps reviews
Security Baseline
# Tetragon policy (eBPF runtime enforcement)
apiVersion: cilium.io/v1alpha1
kind: TracingPolicy
metadata:
name: block-shell
spec:
kprobes:
- call: "sys_execve"
selectors:
- matchBinaries:
- operator: "In"
values: ["/bin/sh", "/bin/bash"]
matchNamespaces:
- namespace: production
action: Block
Agents
- platform-engineer - GitOps, IaC, Kubernetes, observability
- data-engineer - Pipelines, ETL, data infrastructure
- finops-engineer - Cloud cost optimization, FinOps framework
Deep Dives
- references/gitops-patterns.md
- references/kubernetes-gateway.md
- references/opentelemetry.md
- references/finops-framework.md
Examples
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.