Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add jackspace/ClaudeSkillz --skill "Fluxwing Screenshot Importer"
Install specific skill from multi-skill repository
# Description
Import UI screenshots and generate uxscii components automatically using vision analysis. Use when user wants to import, convert, or generate .uxm components from screenshots or images.
# SKILL.md
name: Fluxwing Screenshot Importer
description: Import UI screenshots and generate uxscii components automatically using vision analysis. Use when user wants to import, convert, or generate .uxm components from screenshots or images.
version: 0.0.1
author: Trabian
allowed-tools: Read, Write, Task, TodoWrite, Glob
Fluxwing Screenshot Importer
Import UI screenshots and convert them to the uxscii standard by orchestrating specialized vision agents.
Data Location Rules
READ from (bundled templates - reference only):
- {SKILL_ROOT}/../uxscii-component-creator/templates/ - 11 component templates (for reference)
- {SKILL_ROOT}/docs/ - Screenshot processing documentation
WRITE to (project workspace):
- ./fluxwing/components/ - Extracted components (.uxm + .md)
- ./fluxwing/screens/ - Screen composition (.uxm + .md + .rendered.md)
NEVER write to skill directories - they are read-only!
Your Task
Import a screenshot of a UI design and automatically generate uxscii components and screens by orchestrating specialized agents:
- Vision Coordinator Agent - Spawns 3 parallel vision agents (layout + components + properties)
- Component Generator Agents - Generate files in parallel (atomic + composite + screen)
Workflow
Phase 1: Get Screenshot Path
Ask the user for the screenshot path if not provided:
- "Which screenshot would you like to import?"
- Validate file exists and is a supported format (PNG, JPG, JPEG, WebP, GIF)
// Example
const screenshotPath = "/path/to/screenshot.png";
Phase 2: Spawn Vision Coordinator Agent
CRITICAL: Spawn the screenshot-vision-coordinator agent to orchestrate parallel vision analysis.
This agent will:
- Spawn 3 vision agents in parallel (layout discovery + component detection + visual properties)
- Wait for all agents to complete
- Merge results into unified component data structure
- Return JSON with screen metadata, components array, and composition
Task({
subagent_type: "general-purpose",
description: "Analyze screenshot with vision analysis",
prompt: `You are a UI screenshot analyzer extracting component structure for uxscii.
Screenshot path: ${screenshotPath}
Your task:
1. Read the screenshot image file
2. Analyze the UI layout structure (vertical, horizontal, grid, sidebar+main)
3. Detect all UI components (buttons, inputs, navigation, cards, etc.)
4. Extract visual properties (colors, spacing, borders, typography)
5. Identify component hierarchy (atomic vs composite)
6. Merge all findings into a unified data structure
7. Return valid JSON output
CRITICAL detection requirements:
- Do NOT miss navigation elements (check all edges - top, left, right, bottom)
- Do NOT miss small elements (icons, badges, close buttons, status indicators)
- Identify composite components (forms, cards with multiple elements)
- Note spatial relationships between components
Expected output format (valid JSON only, no markdown):
{
"success": true,
"screen": {
"id": "screen-name",
"type": "dashboard|login|profile|settings",
"name": "Screen Name",
"description": "What this screen does",
"layout": "vertical|horizontal|grid|sidebar-main"
},
"components": [
{
"id": "component-id",
"type": "button|input|navigation|etc",
"name": "Component Name",
"description": "What it does",
"visualProperties": {...},
"isComposite": false
}
],
"composition": {
"atomicComponents": ["id1", "id2"],
"compositeComponents": ["id3"],
"screenComponents": ["screen-id"]
}
}
Use your vision capabilities to analyze the screenshot carefully.`
})
Wait for the vision coordinator to complete and return results.
Phase 3: Validate Vision Data
Check the returned data structure:
const visionData = visionCoordinatorResult;
// Required fields
if (!visionData.success) {
throw new Error(`Vision analysis failed: ${visionData.error}`);
}
if (!visionData.components || visionData.components.length === 0) {
throw new Error("No components detected in screenshot");
}
// Navigation check (CRITICAL)
const hasNavigation = visionData.components.some(c =>
c.type === 'navigation' || c.id.includes('nav') || c.id.includes('header')
);
if (visionData.screen.type === 'dashboard' && !hasNavigation) {
console.warn("β οΈ Dashboard detected but no navigation found - verify all nav elements were detected");
}
Phase 4: Spawn Component Generator Agents (Parallel)
CRITICAL: YOU MUST spawn ALL component generator agents in a SINGLE message with multiple Task tool calls. This is the ONLY way to achieve true parallel execution.
DO THIS: Send ONE message containing ALL Task calls for all components
DON'T DO THIS: Send separate messages for each component (this runs them sequentially)
For each atomic component, create a Task call in the SAME message:
Task({
subagent_type: "general-purpose",
description: "Generate email-input component",
prompt: "You are a uxscii component generator. Generate component files from vision data.
Component data: {id: 'email-input', type: 'input', visualProperties: {...}}
Your task:
1. Load schema from {SKILL_ROOT}/../uxscii-component-creator/schemas/uxm-component.schema.json
2. Load docs from {SKILL_ROOT}/docs/screenshot-import-helpers.md
3. Generate .uxm file (valid JSON with default state only)
4. Generate .md file (ASCII template matching visual properties)
5. Save to ./fluxwing/components/
6. Return success with file paths
Follow uxscii standard strictly."
})
Task({
subagent_type: "general-purpose",
description: "Generate password-input component",
prompt: "You are a uxscii component generator. Generate component files from vision data.
Component data: {id: 'password-input', type: 'input', visualProperties: {...}}
Your task:
1. Load schema from {SKILL_ROOT}/../uxscii-component-creator/schemas/uxm-component.schema.json
2. Load docs from {SKILL_ROOT}/docs/screenshot-import-helpers.md
3. Generate .uxm file (valid JSON with default state only)
4. Generate .md file (ASCII template matching visual properties)
5. Save to ./fluxwing/components/
6. Return success with file paths
Follow uxscii standard strictly."
})
Task({
subagent_type: "general-purpose",
description: "Generate submit-button component",
prompt: "You are a uxscii component generator. Generate component files from vision data.
Component data: {id: 'submit-button', type: 'button', visualProperties: {...}}
Your task:
1. Load schema from {SKILL_ROOT}/../uxscii-component-creator/schemas/uxm-component.schema.json
2. Load docs from {SKILL_ROOT}/docs/screenshot-import-helpers.md
3. Generate .uxm file (valid JSON with default state only)
4. Generate .md file (ASCII template matching visual properties)
5. Save to ./fluxwing/components/
6. Return success with file paths
Follow uxscii standard strictly."
})
... repeat for ALL atomic components in the SAME message ...
... then for composite components in the SAME message:
Task({
subagent_type: "general-purpose",
description: "Generate login-form composite",
prompt: "You are a uxscii component generator. Generate composite component from vision data.
Component data: {id: 'login-form', type: 'form', components: [...], visualProperties: {...}}
IMPORTANT: Include component references in props.components array.
Your task:
1. Load schema from {SKILL_ROOT}/../uxscii-component-creator/schemas/uxm-component.schema.json
2. Generate .uxm with components array in props
3. Generate .md with {{component:id}} references
4. Save to ./fluxwing/components/
5. Return success
Follow uxscii standard strictly."
})
Remember: ALL Task calls must be in a SINGLE message for parallel execution!
Phase 5: Generate Screen Files
After all components are created, generate the screen files directly (screen generation is fast, no need for agent):
const screenData = visionData.screen;
const screenId = visionData.composition.screenComponents[0];
// Create screen .uxm
const screenUxm = {
"id": screenId,
"type": "container",
"version": "1.0.0",
"metadata": {
"name": screenData.name,
"description": screenData.description,
"created": new Date().toISOString(),
"modified": new Date().toISOString(),
"tags": ["screen", screenData.type, "imported"],
"category": "layout"
},
"props": {
"title": screenData.name,
"layout": screenData.layout,
"components": visionData.composition.atomicComponents.concat(
visionData.composition.compositeComponents
)
},
"ascii": {
"templateFile": `${screenId}.md`,
"width": 80,
"height": 50
}
};
// Create screen .md and .rendered.md files
Phase 6: Report Results
Create comprehensive summary:
# Screenshot Import Complete β
## Screenshot Analysis
- File: ${screenshotPath}
- Screen type: ${screenData.type}
- Layout: ${screenData.layout}
## Components Generated
### Atomic Components (${atomicCount})
${atomicComponents.map(c => `β ${c.id} (${c.type})`).join('\n')}
### Composite Components (${compositeCount})
${compositeComponents.map(c => `β ${c.id} (${c.type})`).join('\n')}
### Screen
β ${screenId}
## Files Created
**Components** (./fluxwing/components/):
- ${totalComponentFiles} files (.uxm + .md)
**Screen** (./fluxwing/screens/):
- ${screenId}.uxm
- ${screenId}.md
- ${screenId}.rendered.md
**Total: ${totalFiles} files created**
## Performance
- Vision analysis: Parallel (3 agents) β‘
- Component generation: Parallel (${atomicCount + compositeCount} agents) β‘
- Total time: ~${estimatedTime}s
## Next Steps
1. Review screen: `cat ./fluxwing/screens/${screenId}.rendered.md`
2. Add interaction states to components
3. Customize components as needed
4. View all components
Vision Agents Used
This skill orchestrates 5 specialized vision agents:
- screenshot-vision-coordinator - Orchestrates parallel analysis
- screenshot-component-detection - Finds UI elements
- screenshot-layout-discovery - Understands structure
- screenshot-visual-properties - Extracts styling
- screenshot-component-generator - Creates .uxm/.md files
Example Interaction
User: Import this screenshot at /Users/me/Desktop/login.png
Skill: I'll import the UI screenshot and generate uxscii components!
[Validates screenshot exists]
Step 1: Analyzing screenshot with vision agents...
[Spawns vision coordinator]
β Vision analysis complete:
- Detected 5 components
- Screen type: login
- Layout: vertical-center
Step 2: Generating component files in parallel...
[Spawns 5 component generator agents in parallel]
β All components generated!
# Screenshot Import Complete β
## Components Generated
β email-input (input)
β password-input (input)
β submit-button (button)
β cancel-link (link)
β login-form (form)
## Files Created
- 10 component files
- 3 screen files
Total: 13 files
Performance: ~45s (5 agents in parallel) β‘
Next steps:
- Review: cat ./fluxwing/screens/login-screen.rendered.md
- Add states to make components interactive
Quality Standards
Ensure imported components include:
- β Valid JSON schema compliance
- β Complete metadata (name, description, tags)
- β Proper component types
- β ASCII art matches detected visual properties
- β All detected components extracted
- β Screen composition includes all components
- β Rendered example with realistic data
Important Notes
- Parallel execution is critical: All agents must be spawned in a single message
- Navigation elements: Verify top nav, side nav, footer nav are detected
- Small elements: Don't miss icons, badges, close buttons, status indicators
- Composite components: Forms, cards with multiple elements
- Screen files: Always create 3 files (.uxm, .md, .rendered.md)
- Validation: Check vision data before generating components
Error Handling
If vision analysis fails:
β Vision analysis failed: [error message]
Please check:
- Screenshot file exists and is readable
- File format is supported (PNG, JPG, JPEG, WebP, GIF)
- Screenshot contains visible UI elements
If component generation fails:
β οΈ Partial success: 3 of 5 components generated
Successful:
β email-input
β password-input
β submit-button
Failed:
β cancel-link: [error]
β login-form: [error]
You can retry failed components or create them manually.
If no components detected:
β No components detected in screenshot.
This could mean:
- Screenshot is blank or unclear
- UI elements are too small to detect
- Screenshot is not a UI design
Please try a different screenshot or create components manually.
Resources
See {SKILL_ROOT}/docs/ for detailed documentation on:
- screenshot-import-ascii.md - ASCII generation patterns
- screenshot-import-examples.md - Example imports
- screenshot-import-helpers.md - Helper functions
- screenshot-data-merging.md - Data structure merging
- screenshot-screen-generation.md - Screen file creation
- screenshot-validation-functions.md - Data validation
You're helping users rapidly convert visual designs into uxscii components!
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.