Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add jiatastic/open-python-skills --skill "python-backend"
Install specific skill from multi-skill repository
# Description
>
# SKILL.md
name: python-backend
description: >
Python backend development expertise for FastAPI, security patterns, database operations,
Upstash integrations, and code quality. Use when: (1) Building REST APIs with FastAPI,
(2) Implementing JWT/OAuth2 authentication, (3) Setting up SQLAlchemy/async databases,
(4) Integrating Redis/Upstash caching, (5) Refactoring AI-generated Python code (deslopification),
(6) Designing API patterns, or (7) Optimizing backend performance.
python-backend
Production-ready Python backend patterns for FastAPI, SQLAlchemy, and Upstash.
When to Use This Skill
- Building REST APIs with FastAPI
- Implementing JWT/OAuth2 authentication
- Setting up SQLAlchemy async databases
- Integrating Redis/Upstash caching and rate limiting
- Refactoring AI-generated Python code
- Designing API patterns and project structure
Core Principles
- Async-first - Use async/await for I/O operations
- Type everything - Pydantic models for validation
- Dependency injection - Use FastAPI's Depends()
- Fail fast - Validate early, use HTTPException
- Security by default - Never trust user input
Quick Patterns
Project Structure
src/
βββ auth/
β βββ router.py # endpoints
β βββ schemas.py # pydantic models
β βββ models.py # db models
β βββ service.py # business logic
β βββ dependencies.py
βββ posts/
β βββ ...
βββ config.py
βββ database.py
βββ main.py
Async Routes
# BAD - blocks event loop
@router.get("/")
async def bad():
time.sleep(10) # Blocking!
# GOOD - runs in threadpool
@router.get("/")
def good():
time.sleep(10) # OK in sync function
# BEST - non-blocking
@router.get("/")
async def best():
await asyncio.sleep(10) # Non-blocking
Pydantic Validation
from pydantic import BaseModel, EmailStr, Field
class UserCreate(BaseModel):
email: EmailStr
username: str = Field(min_length=3, max_length=50, pattern="^[a-zA-Z0-9_]+$")
age: int = Field(ge=18)
Dependency Injection
async def get_current_user(token: str = Depends(oauth2_scheme)) -> User:
payload = decode_token(token)
user = await get_user(payload["sub"])
if not user:
raise HTTPException(401, "User not found")
return user
@router.get("/me")
async def get_me(user: User = Depends(get_current_user)):
return user
SQLAlchemy Async
from sqlalchemy.ext.asyncio import AsyncSession, async_sessionmaker, create_async_engine
engine = create_async_engine(DATABASE_URL, pool_pre_ping=True)
SessionLocal = async_sessionmaker(engine, expire_on_commit=False)
async def get_session() -> AsyncGenerator[AsyncSession, None]:
async with SessionLocal() as session:
yield session
Redis Caching
from upstash_redis import Redis
redis = Redis.from_env()
@app.get("/data/{id}")
def get_data(id: str):
cached = redis.get(f"data:{id}")
if cached:
return cached
data = fetch_from_db(id)
redis.setex(f"data:{id}", 600, data)
return data
Rate Limiting
from upstash_ratelimit import Ratelimit, SlidingWindow
ratelimit = Ratelimit(
redis=Redis.from_env(),
limiter=SlidingWindow(max_requests=10, window=60),
)
@app.get("/api/resource")
def protected(request: Request):
result = ratelimit.limit(request.client.host)
if not result.allowed:
raise HTTPException(429, "Rate limit exceeded")
return {"data": "..."}
Reference Documents
For detailed patterns, see:
| Document | Content |
|---|---|
references/fastapi_patterns.md |
Project structure, async, Pydantic, dependencies, testing |
references/security_patterns.md |
JWT, OAuth2, password hashing, CORS, API keys |
references/database_patterns.md |
SQLAlchemy async, transactions, eager loading, migrations |
references/upstash_patterns.md |
Redis, rate limiting, QStash background jobs |
Resources
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.