linxule

interview-ingest

1
0
# Install this skill:
npx skills add linxule/interpretive-orchestration --skill "interview-ingest"

Install specific skill from multi-skill repository

# Description

This skill should be used when users have audio interview recordings to transcribe, need to convert PDF documents, mentions 'import data', 'transcribe', 'convert', or is starting data preparation for Stage 1 or Stage 2.

# SKILL.md


name: interview-ingest
description: "This skill should be used when users have audio interview recordings to transcribe, need to convert PDF documents, mentions 'import data', 'transcribe', 'convert', or is starting data preparation for Stage 1 or Stage 2."


interview-ingest

Audio transcription and document conversion for qualitative data import. Converts interview recordings, PDFs, and other formats into analyzable markdown.

When to Use

Use this skill when:
- User has audio interview recordings to transcribe
- User needs to convert PDF documents
- User mentions "import data", "transcribe", "convert"
- Starting data preparation for Stage 1 or Stage 2

MCP Dependencies

This skill operates at three capability tiers:

Tier 1: Best (Requires MinerU API key)

  • PDFs: MinerU VLM-powered parsing (90%+ accuracy)
  • Tables/Images: Excellent extraction
  • Audio: Falls back to Markdownify
  • Best for: Complex academic papers, documents with tables/figures

Tier 2: Good (Bundled - no API key)

  • PDFs: Markdownify conversion
  • Audio: Markdownify transcription
  • Tables/Images: Basic extraction
  • Best for: Simple documents, interview recordings

Tier 3: Basic (Fallback)

  • PDFs: Manual copy/paste or OCR
  • Audio: External transcription service
  • Guidance provided for manual workflow

Checking Tier Availability

# Check for MinerU
[ -n "$MINERU_API_KEY" ] && echo "MinerU available (Tier 1)"

# Markdownify is always available (bundled)
echo "Markdownify available (Tier 2)"

Workflow by Format

Audio Interviews

Tier 1/2 (Markdownify):

# Transcribe audio file
markdownify audio-to-markdown /path/to/interview.mp3

# Output: interview.md with transcript

Best practices:
- Use high-quality recordings when possible
- Review transcripts for accuracy
- Add speaker labels if not auto-detected
- Note timestamps for key passages

PDF Documents

Tier 1 (MinerU - recommended for complex PDFs):

# Parse PDF with VLM mode for tables/images
mineru_parse({
  url: "file:///path/to/paper.pdf",
  model: "vlm",
  formula: true,
  table: true
})

Tier 2 (Markdownify):

# Convert PDF to markdown
markdownify pdf-to-markdown /path/to/paper.pdf

Other Formats

Format Tool Notes
DOCX Markdownify Good conversion
PPTX Markdownify Extracts text + images
XLSX Markdownify Tables preserved
Images Markdownify OCR + metadata
YouTube Markdownify Captions/transcript
Web pages Markdownify or Jina Full content

Scripts

process-audio.js

Batch process interview recordings.

node skills/interview-ingest/scripts/process-audio.js \
  --project-path /path/to/project \
  --input-dir /path/to/recordings \
  --output-dir stage1-foundation/manual-codes

Output Organization

stage1-foundation/
β”œβ”€β”€ manual-codes/
β”‚   β”œβ”€β”€ P001-interview.md    # Transcribed interviews
β”‚   β”œβ”€β”€ P002-interview.md
β”‚   └── ...
β”œβ”€β”€ raw-data/                 # Original files (optional)
β”‚   β”œβ”€β”€ P001-recording.mp3
β”‚   └── ...
└── data-inventory.json       # Tracks all data sources

data-inventory.json

{
  "documents": [
    {
      "id": "P001",
      "original_file": "P001-recording.mp3",
      "converted_file": "P001-interview.md",
      "format": "audio",
      "conversion_tool": "markdownify",
      "conversion_date": "2025-01-15",
      "duration_minutes": 45,
      "notes": "Good audio quality"
    }
  ]
}

Quality Considerations

Audio Transcription

  • Review all transcripts - AI transcription has errors
  • Add speaker labels - "Interviewer:" and "Participant:"
  • Note unclear passages - Mark with [unclear] or [inaudible]
  • Include timestamps - For later reference to original

PDF Conversion

  • Check table accuracy - Complex tables may need manual fixes
  • Verify figures - May need manual description
  • Review formatting - Headers, lists, emphasis

Integration with Stages

Stage 1 Preparation

  1. Transcribe/convert all data sources
  2. Organize in stage1-foundation/
  3. Create data-inventory.json
  4. Begin manual coding on converted files

Stage 2 Processing

  1. @dialogical-coder works with markdown files
  2. Quotes reference line numbers in converted files
  3. Audit trail links back to original sources

Fallback Guidance

If automated transcription unavailable:

Audio Options:
- Otter.ai - Good transcription service
- Rev.com - Professional transcription
- YouTube auto-captions - Upload as unlisted video
- Manual transcription - Time-intensive but accurate

PDF Options:
- Adobe Acrobat - Export to Word/text
- Google Docs - Open PDF, auto-OCR
- Manual copy/paste - For short documents

  • MCPs: MinerU (optional), Markdownify (bundled)
  • Skills: document-conversion for detailed PDF handling
  • Commands: Data import commands

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.