Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add Mindrally/skills --skill "anthropic-claude-development"
Install specific skill from multi-skill repository
# Description
Expert guidance for Anthropic Claude API development including Messages API, tool use, prompt engineering, and building production applications with Claude models.
# SKILL.md
name: anthropic-claude-development
description: Expert guidance for Anthropic Claude API development including Messages API, tool use, prompt engineering, and building production applications with Claude models.
Anthropic Claude API Development
You are an expert in Anthropic Claude API development, including the Messages API, tool use, prompt engineering, and building production-ready applications with Claude models.
Key Principles
- Write concise, technical responses with accurate Python examples
- Use type hints for all function signatures
- Follow Claude's usage policies and guidelines
- Implement proper error handling and retry logic
- Never hardcode API keys; use environment variables
Setup and Configuration
Environment Setup
import os
from anthropic import Anthropic
# Always use environment variables for API keys
client = Anthropic(api_key=os.environ.get("ANTHROPIC_API_KEY"))
Best Practices
- Store API keys in
.envfiles, never commit them - Use
python-dotenvfor local development - Set up separate keys for development and production
- Configure proper timeout settings for your use case
Messages API
Basic Usage
from anthropic import Anthropic
client = Anthropic()
message = client.messages.create(
model="claude-sonnet-4-20250514",
max_tokens=1024,
system="You are a helpful assistant.",
messages=[
{"role": "user", "content": "Hello, Claude!"}
]
)
print(message.content[0].text)
Streaming Responses
with client.messages.stream(
model="claude-sonnet-4-20250514",
max_tokens=1024,
messages=[{"role": "user", "content": "Write a story"}]
) as stream:
for text in stream.text_stream:
print(text, end="", flush=True)
Model Selection
- Use
claude-opus-4-20250514for complex reasoning and analysis - Use
claude-sonnet-4-20250514for balanced performance and cost - Use
claude-3-5-haiku-20241022for fast, efficient responses - Consider task complexity when selecting models
Tool Use (Function Calling)
Defining Tools
tools = [
{
"name": "get_weather",
"description": "Get the current weather in a given location",
"input_schema": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g., San Francisco, CA"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The unit of temperature"
}
},
"required": ["location"]
}
}
]
response = client.messages.create(
model="claude-sonnet-4-20250514",
max_tokens=1024,
tools=tools,
messages=[{"role": "user", "content": "What's the weather in London?"}]
)
Handling Tool Calls
import json
def process_tool_use(response, messages, tools):
# Check if Claude wants to use a tool
if response.stop_reason == "tool_use":
tool_use_block = next(
block for block in response.content
if block.type == "tool_use"
)
tool_name = tool_use_block.name
tool_input = tool_use_block.input
# Execute the tool
tool_result = execute_tool(tool_name, tool_input)
# Continue the conversation
messages.append({"role": "assistant", "content": response.content})
messages.append({
"role": "user",
"content": [{
"type": "tool_result",
"tool_use_id": tool_use_block.id,
"content": json.dumps(tool_result)
}]
})
# Get final response
return client.messages.create(
model="claude-sonnet-4-20250514",
max_tokens=1024,
tools=tools,
messages=messages
)
return response
Vision and Multimodal
Image Analysis
import base64
# From URL
message = client.messages.create(
model="claude-sonnet-4-20250514",
max_tokens=1024,
messages=[{
"role": "user",
"content": [
{
"type": "image",
"source": {
"type": "url",
"url": "https://example.com/image.jpg"
}
},
{
"type": "text",
"text": "Describe this image in detail."
}
]
}]
)
# From base64
with open("image.png", "rb") as f:
image_data = base64.standard_b64encode(f.read()).decode("utf-8")
message = client.messages.create(
model="claude-sonnet-4-20250514",
max_tokens=1024,
messages=[{
"role": "user",
"content": [
{
"type": "image",
"source": {
"type": "base64",
"media_type": "image/png",
"data": image_data
}
},
{
"type": "text",
"text": "What do you see?"
}
]
}]
)
Prompt Engineering for Claude
System Prompts
- Be clear and specific about the assistant's role
- Include relevant context and constraints
- Specify output format when needed
- Use XML tags for structured instructions
system_prompt = """You are a technical documentation writer.
<guidelines>
- Write clear, concise documentation
- Use proper markdown formatting
- Include code examples where appropriate
- Follow the Google developer documentation style guide
</guidelines>
<output_format>
Always structure your response with:
1. Overview
2. Prerequisites
3. Step-by-step instructions
4. Examples
5. Troubleshooting
</output_format>
"""
Prompting Best Practices
- Use XML tags to structure complex prompts
- Provide examples for few-shot learning
- Be explicit about what you want and don't want
- Use chain-of-thought prompting for complex reasoning
- Specify the desired output format clearly
Error Handling
Retry Logic
from anthropic import RateLimitError, APIError
import time
def call_with_retry(func, max_retries=3, base_delay=1):
for attempt in range(max_retries):
try:
return func()
except RateLimitError:
delay = base_delay * (2 ** attempt)
print(f"Rate limited. Retrying in {delay}s...")
time.sleep(delay)
except APIError as e:
if attempt == max_retries - 1:
raise
time.sleep(base_delay)
raise Exception("Max retries exceeded")
Common Error Types
RateLimitError: Implement exponential backoffAPIError: Check API status, retry with backoffAuthenticationError: Verify API keyBadRequestError: Validate input parameters
Prompt Caching
Using Caching
# Enable caching for frequently used context
response = client.messages.create(
model="claude-sonnet-4-20250514",
max_tokens=1024,
system=[{
"type": "text",
"text": "Large context that should be cached...",
"cache_control": {"type": "ephemeral"}
}],
messages=[{"role": "user", "content": "Question about the context"}]
)
Caching Best Practices
- Cache large, static content like documentation
- Place cached content at the beginning of the prompt
- Monitor cache hit rates for optimization
- Use caching for repeated similar queries
Message Batches API
Batch Processing
# Create a batch for non-time-sensitive requests
batch = client.messages.batches.create(
requests=[
{
"custom_id": "request-1",
"params": {
"model": "claude-sonnet-4-20250514",
"max_tokens": 1024,
"messages": [{"role": "user", "content": "Question 1"}]
}
},
{
"custom_id": "request-2",
"params": {
"model": "claude-sonnet-4-20250514",
"max_tokens": 1024,
"messages": [{"role": "user", "content": "Question 2"}]
}
}
]
)
Cost Optimization
- Use appropriate models for task complexity
- Implement prompt caching for repeated context
- Use batches for non-urgent requests
- Set reasonable
max_tokenslimits - Cache responses when appropriate
- Monitor token usage patterns
Security Best Practices
- Never expose API keys in client-side code
- Implement rate limiting on your endpoints
- Validate and sanitize user inputs
- Log API usage for monitoring and auditing
- Follow Anthropic's acceptable use policy
Dependencies
- anthropic
- python-dotenv
- pydantic (for input validation)
- tenacity (for retry logic)
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.