Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add proffesor-for-testing/agentic-qe --skill "V3 CLI Modernization"
Install specific skill from multi-skill repository
# Description
CLI modernization and hooks system enhancement for claude-flow v3. Implements interactive prompts, command decomposition, enhanced hooks integration, and intelligent workflow automation.
# SKILL.md
name: "V3 CLI Modernization"
description: "CLI modernization and hooks system enhancement for claude-flow v3. Implements interactive prompts, command decomposition, enhanced hooks integration, and intelligent workflow automation."
V3 CLI Modernization
What This Skill Does
Modernizes claude-flow v3 CLI with interactive prompts, intelligent command decomposition, enhanced hooks integration, performance optimization, and comprehensive workflow automation capabilities.
Quick Start
# Initialize CLI modernization analysis
Task("CLI architecture", "Analyze current CLI structure and identify optimization opportunities", "cli-hooks-developer")
# Modernization implementation (parallel)
Task("Command decomposition", "Break down large CLI files into focused modules", "cli-hooks-developer")
Task("Interactive prompts", "Implement intelligent interactive CLI experience", "cli-hooks-developer")
Task("Hooks enhancement", "Deep integrate hooks with CLI lifecycle", "cli-hooks-developer")
CLI Architecture Modernization
Current State Analysis
Current CLI Issues:
βββ index.ts: 108KB monolithic file
βββ enterprise.ts: 68KB feature module
βββ Limited interactivity: Basic command parsing
βββ Hooks integration: Basic pre/post execution
βββ No intelligent workflows: Manual command chaining
Target Architecture:
βββ Modular Commands: <500 lines per command
βββ Interactive Prompts: Smart context-aware UX
βββ Enhanced Hooks: Deep lifecycle integration
βββ Workflow Automation: Intelligent command orchestration
βββ Performance: <200ms command response time
Modular Command Architecture
// src/cli/core/command-registry.ts
interface CommandModule {
name: string;
description: string;
category: CommandCategory;
handler: CommandHandler;
middleware: MiddlewareStack;
permissions: Permission[];
examples: CommandExample[];
}
export class ModularCommandRegistry {
private commands = new Map<string, CommandModule>();
private categories = new Map<CommandCategory, CommandModule[]>();
private aliases = new Map<string, string>();
registerCommand(command: CommandModule): void {
this.commands.set(command.name, command);
// Register in category index
if (!this.categories.has(command.category)) {
this.categories.set(command.category, []);
}
this.categories.get(command.category)!.push(command);
}
async executeCommand(name: string, args: string[]): Promise<CommandResult> {
const command = this.resolveCommand(name);
if (!command) {
throw new CommandNotFoundError(name, this.getSuggestions(name));
}
// Execute middleware stack
const context = await this.buildExecutionContext(command, args);
const result = await command.middleware.execute(context);
return result;
}
private resolveCommand(name: string): CommandModule | undefined {
// Try exact match first
if (this.commands.has(name)) {
return this.commands.get(name);
}
// Try alias
const aliasTarget = this.aliases.get(name);
if (aliasTarget) {
return this.commands.get(aliasTarget);
}
// Try fuzzy match
return this.findFuzzyMatch(name);
}
}
Command Decomposition Strategy
Swarm Commands Module
// src/cli/commands/swarm/swarm.command.ts
@Command({
name: 'swarm',
description: 'Swarm coordination and management',
category: 'orchestration'
})
export class SwarmCommand {
constructor(
private swarmCoordinator: UnifiedSwarmCoordinator,
private promptService: InteractivePromptService
) {}
@SubCommand('init')
@Option('--topology', 'Swarm topology (mesh|hierarchical|adaptive)', 'hierarchical')
@Option('--agents', 'Number of agents to spawn', 5)
@Option('--interactive', 'Interactive agent configuration', false)
async init(
@Arg('projectName') projectName: string,
options: SwarmInitOptions
): Promise<CommandResult> {
if (options.interactive) {
return this.interactiveSwarmInit(projectName);
}
return this.quickSwarmInit(projectName, options);
}
private async interactiveSwarmInit(projectName: string): Promise<CommandResult> {
console.log(`π Initializing Swarm for ${projectName}`);
// Interactive topology selection
const topology = await this.promptService.select({
message: 'Select swarm topology:',
choices: [
{ name: 'Hierarchical (Queen-led coordination)', value: 'hierarchical' },
{ name: 'Mesh (Peer-to-peer collaboration)', value: 'mesh' },
{ name: 'Adaptive (Dynamic topology switching)', value: 'adaptive' }
]
});
// Agent configuration
const agents = await this.promptAgentConfiguration();
// Initialize with configuration
const swarm = await this.swarmCoordinator.initialize({
name: projectName,
topology,
agents,
hooks: {
onAgentSpawn: this.handleAgentSpawn.bind(this),
onTaskComplete: this.handleTaskComplete.bind(this),
onSwarmComplete: this.handleSwarmComplete.bind(this)
}
});
return CommandResult.success({
message: `β
Swarm ${projectName} initialized with ${agents.length} agents`,
data: { swarmId: swarm.id, topology, agentCount: agents.length }
});
}
@SubCommand('status')
async status(): Promise<CommandResult> {
const swarms = await this.swarmCoordinator.listActiveSwarms();
if (swarms.length === 0) {
return CommandResult.info('No active swarms found');
}
// Interactive swarm selection if multiple
const selectedSwarm = swarms.length === 1
? swarms[0]
: await this.promptService.select({
message: 'Select swarm to inspect:',
choices: swarms.map(s => ({
name: `${s.name} (${s.agents.length} agents, ${s.topology})`,
value: s
}))
});
return this.displaySwarmStatus(selectedSwarm);
}
}
Learning Commands Module
// src/cli/commands/learning/learning.command.ts
@Command({
name: 'learning',
description: 'Learning system management and optimization',
category: 'intelligence'
})
export class LearningCommand {
constructor(
private learningService: IntegratedLearningService,
private promptService: InteractivePromptService
) {}
@SubCommand('start')
@Option('--algorithm', 'RL algorithm to use', 'auto')
@Option('--tier', 'Learning tier (basic|standard|advanced)', 'standard')
async start(options: LearningStartOptions): Promise<CommandResult> {
// Auto-detect optimal algorithm if not specified
if (options.algorithm === 'auto') {
const taskContext = await this.analyzeCurrentContext();
options.algorithm = this.learningService.selectOptimalAlgorithm(taskContext);
console.log(`π§ Auto-selected ${options.algorithm} algorithm based on context`);
}
const session = await this.learningService.startSession({
algorithm: options.algorithm,
tier: options.tier,
userId: await this.getCurrentUser()
});
return CommandResult.success({
message: `π Learning session started with ${options.algorithm}`,
data: { sessionId: session.id, algorithm: options.algorithm, tier: options.tier }
});
}
@SubCommand('feedback')
@Arg('reward', 'Reward value (0-1)', 'number')
async feedback(
@Arg('reward') reward: number,
@Option('--context', 'Additional context for learning')
context?: string
): Promise<CommandResult> {
const activeSession = await this.learningService.getActiveSession();
if (!activeSession) {
return CommandResult.error('No active learning session found. Start one with `learning start`');
}
await this.learningService.submitFeedback({
sessionId: activeSession.id,
reward,
context,
timestamp: new Date()
});
return CommandResult.success({
message: `π Feedback recorded (reward: ${reward})`,
data: { reward, sessionId: activeSession.id }
});
}
@SubCommand('metrics')
async metrics(): Promise<CommandResult> {
const metrics = await this.learningService.getMetrics();
// Interactive metrics display
await this.displayInteractiveMetrics(metrics);
return CommandResult.success('Metrics displayed');
}
}
Interactive Prompt System
Advanced Prompt Service
// src/cli/services/interactive-prompt.service.ts
interface PromptOptions {
message: string;
type: 'select' | 'multiselect' | 'input' | 'confirm' | 'progress';
choices?: PromptChoice[];
default?: any;
validate?: (input: any) => boolean | string;
transform?: (input: any) => any;
}
export class InteractivePromptService {
private inquirer: any; // Dynamic import for tree-shaking
async select<T>(options: SelectPromptOptions<T>): Promise<T> {
const { default: inquirer } = await import('inquirer');
const result = await inquirer.prompt([{
type: 'list',
name: 'selection',
message: options.message,
choices: options.choices,
default: options.default
}]);
return result.selection;
}
async multiSelect<T>(options: MultiSelectPromptOptions<T>): Promise<T[]> {
const { default: inquirer } = await import('inquirer');
const result = await inquirer.prompt([{
type: 'checkbox',
name: 'selections',
message: options.message,
choices: options.choices,
validate: (input: T[]) => {
if (options.minSelections && input.length < options.minSelections) {
return `Please select at least ${options.minSelections} options`;
}
if (options.maxSelections && input.length > options.maxSelections) {
return `Please select at most ${options.maxSelections} options`;
}
return true;
}
}]);
return result.selections;
}
async input(options: InputPromptOptions): Promise<string> {
const { default: inquirer } = await import('inquirer');
const result = await inquirer.prompt([{
type: 'input',
name: 'input',
message: options.message,
default: options.default,
validate: options.validate,
transformer: options.transform
}]);
return result.input;
}
async progressTask<T>(
task: ProgressTask<T>,
options: ProgressOptions
): Promise<T> {
const { default: cliProgress } = await import('cli-progress');
const progressBar = new cliProgress.SingleBar({
format: `${options.title} |{bar}| {percentage}% | {status}`,
barCompleteChar: 'β',
barIncompleteChar: 'β',
hideCursor: true
});
progressBar.start(100, 0, { status: 'Starting...' });
try {
const result = await task({
updateProgress: (percent: number, status?: string) => {
progressBar.update(percent, { status: status || 'Processing...' });
}
});
progressBar.update(100, { status: 'Complete!' });
progressBar.stop();
return result;
} catch (error) {
progressBar.stop();
throw error;
}
}
async confirmWithDetails(
message: string,
details: ConfirmationDetails
): Promise<boolean> {
console.log('\n' + chalk.bold(message));
console.log(chalk.gray('Details:'));
for (const [key, value] of Object.entries(details)) {
console.log(chalk.gray(` ${key}: ${value}`));
}
return this.confirm('\nProceed?');
}
}
Enhanced Hooks Integration
Deep CLI Hooks Integration
// src/cli/hooks/cli-hooks-manager.ts
interface CLIHookEvent {
type: 'command_start' | 'command_end' | 'command_error' | 'agent_spawn' | 'task_complete';
command: string;
args: string[];
context: ExecutionContext;
timestamp: Date;
}
export class CLIHooksManager {
private hooks: Map<string, HookHandler[]> = new Map();
private learningIntegration: LearningHooksIntegration;
constructor() {
this.learningIntegration = new LearningHooksIntegration();
this.setupDefaultHooks();
}
private setupDefaultHooks(): void {
// Learning integration hooks
this.registerHook('command_start', async (event: CLIHookEvent) => {
await this.learningIntegration.recordCommandStart(event);
});
this.registerHook('command_end', async (event: CLIHookEvent) => {
await this.learningIntegration.recordCommandSuccess(event);
});
this.registerHook('command_error', async (event: CLIHookEvent) => {
await this.learningIntegration.recordCommandError(event);
});
// Intelligent suggestions
this.registerHook('command_start', async (event: CLIHookEvent) => {
const suggestions = await this.generateIntelligentSuggestions(event);
if (suggestions.length > 0) {
this.displaySuggestions(suggestions);
}
});
// Performance monitoring
this.registerHook('command_end', async (event: CLIHookEvent) => {
await this.recordPerformanceMetrics(event);
});
}
async executeHooks(type: string, event: CLIHookEvent): Promise<void> {
const handlers = this.hooks.get(type) || [];
await Promise.all(handlers.map(handler =>
this.executeHookSafely(handler, event)
));
}
private async generateIntelligentSuggestions(event: CLIHookEvent): Promise<Suggestion[]> {
const context = await this.learningIntegration.getExecutionContext(event);
const patterns = await this.learningIntegration.findSimilarPatterns(context);
return patterns.map(pattern => ({
type: 'optimization',
message: `Based on similar executions, consider: ${pattern.suggestion}`,
confidence: pattern.confidence
}));
}
}
Learning Integration
// src/cli/hooks/learning-hooks-integration.ts
export class LearningHooksIntegration {
constructor(
private agenticFlowHooks: AgenticFlowHooksClient,
private agentDBLearning: AgentDBLearningClient
) {}
async recordCommandStart(event: CLIHookEvent): Promise<void> {
// Start trajectory tracking
await this.agenticFlowHooks.trajectoryStart({
sessionId: event.context.sessionId,
command: event.command,
args: event.args,
context: event.context
});
// Record experience in AgentDB
await this.agentDBLearning.recordExperience({
type: 'command_execution',
state: this.encodeCommandState(event),
action: event.command,
timestamp: event.timestamp
});
}
async recordCommandSuccess(event: CLIHookEvent): Promise<void> {
const executionTime = Date.now() - event.timestamp.getTime();
const reward = this.calculateReward(event, executionTime, true);
// Complete trajectory
await this.agenticFlowHooks.trajectoryEnd({
sessionId: event.context.sessionId,
success: true,
reward,
verdict: 'positive'
});
// Submit feedback to learning system
await this.agentDBLearning.submitFeedback({
sessionId: event.context.learningSessionId,
reward,
success: true,
latencyMs: executionTime
});
// Store successful pattern
if (reward > 0.8) {
await this.agenticFlowHooks.storePattern({
pattern: event.command,
solution: event.context.result,
confidence: reward
});
}
}
async recordCommandError(event: CLIHookEvent): Promise<void> {
const executionTime = Date.now() - event.timestamp.getTime();
const reward = this.calculateReward(event, executionTime, false);
// Complete trajectory with error
await this.agenticFlowHooks.trajectoryEnd({
sessionId: event.context.sessionId,
success: false,
reward,
verdict: 'negative',
error: event.context.error
});
// Learn from failure
await this.agentDBLearning.submitFeedback({
sessionId: event.context.learningSessionId,
reward,
success: false,
latencyMs: executionTime,
error: event.context.error
});
}
private calculateReward(event: CLIHookEvent, executionTime: number, success: boolean): number {
if (!success) return 0;
// Base reward for success
let reward = 0.5;
// Performance bonus (faster execution)
const expectedTime = this.getExpectedExecutionTime(event.command);
if (executionTime < expectedTime) {
reward += 0.3 * (1 - executionTime / expectedTime);
}
// Complexity bonus
const complexity = this.calculateCommandComplexity(event);
reward += complexity * 0.2;
return Math.min(reward, 1.0);
}
}
Intelligent Workflow Automation
Workflow Orchestrator
// src/cli/workflows/workflow-orchestrator.ts
interface WorkflowStep {
id: string;
command: string;
args: string[];
dependsOn: string[];
condition?: WorkflowCondition;
retryPolicy?: RetryPolicy;
}
export class WorkflowOrchestrator {
constructor(
private commandRegistry: ModularCommandRegistry,
private promptService: InteractivePromptService
) {}
async executeWorkflow(workflow: Workflow): Promise<WorkflowResult> {
const context = new WorkflowExecutionContext(workflow);
// Display workflow overview
await this.displayWorkflowOverview(workflow);
const confirmed = await this.promptService.confirm(
'Execute this workflow?'
);
if (!confirmed) {
return WorkflowResult.cancelled();
}
// Execute steps
return this.promptService.progressTask(
async ({ updateProgress }) => {
const steps = this.sortStepsByDependencies(workflow.steps);
for (let i = 0; i < steps.length; i++) {
const step = steps[i];
updateProgress((i / steps.length) * 100, `Executing ${step.command}`);
await this.executeStep(step, context);
}
return WorkflowResult.success(context.getResults());
},
{ title: `Workflow: ${workflow.name}` }
);
}
async generateWorkflowFromIntent(intent: string): Promise<Workflow> {
// Use learning system to generate workflow
const patterns = await this.findWorkflowPatterns(intent);
if (patterns.length === 0) {
throw new Error('Could not generate workflow for intent');
}
// Select best pattern or let user choose
const selectedPattern = patterns.length === 1
? patterns[0]
: await this.promptService.select({
message: 'Select workflow template:',
choices: patterns.map(p => ({
name: `${p.name} (${p.confidence}% match)`,
value: p
}))
});
return this.customizeWorkflow(selectedPattern, intent);
}
private async executeStep(step: WorkflowStep, context: WorkflowExecutionContext): Promise<void> {
// Check conditions
if (step.condition && !this.evaluateCondition(step.condition, context)) {
context.skipStep(step.id, 'Condition not met');
return;
}
// Check dependencies
const missingDeps = step.dependsOn.filter(dep => !context.isStepCompleted(dep));
if (missingDeps.length > 0) {
throw new WorkflowError(`Step ${step.id} has unmet dependencies: ${missingDeps.join(', ')}`);
}
// Execute with retry policy
const retryPolicy = step.retryPolicy || { maxAttempts: 1 };
let lastError: Error | null = null;
for (let attempt = 1; attempt <= retryPolicy.maxAttempts; attempt++) {
try {
const result = await this.commandRegistry.executeCommand(step.command, step.args);
context.completeStep(step.id, result);
return;
} catch (error) {
lastError = error as Error;
if (attempt < retryPolicy.maxAttempts) {
await this.delay(retryPolicy.backoffMs || 1000);
}
}
}
throw new WorkflowError(`Step ${step.id} failed after ${retryPolicy.maxAttempts} attempts: ${lastError?.message}`);
}
}
Performance Optimization
Command Performance Monitoring
// src/cli/performance/command-performance.ts
export class CommandPerformanceMonitor {
private metrics = new Map<string, CommandMetrics>();
async measureCommand<T>(
commandName: string,
executor: () => Promise<T>
): Promise<T> {
const start = performance.now();
const memBefore = process.memoryUsage();
try {
const result = await executor();
const end = performance.now();
const memAfter = process.memoryUsage();
this.recordMetrics(commandName, {
executionTime: end - start,
memoryDelta: memAfter.heapUsed - memBefore.heapUsed,
success: true
});
return result;
} catch (error) {
const end = performance.now();
this.recordMetrics(commandName, {
executionTime: end - start,
memoryDelta: 0,
success: false,
error: error as Error
});
throw error;
}
}
private recordMetrics(command: string, measurement: PerformanceMeasurement): void {
if (!this.metrics.has(command)) {
this.metrics.set(command, new CommandMetrics(command));
}
const metrics = this.metrics.get(command)!;
metrics.addMeasurement(measurement);
// Alert if performance degrades
if (metrics.getP95ExecutionTime() > 5000) { // 5 seconds
console.warn(`β οΈ Command '${command}' is performing slowly (P95: ${metrics.getP95ExecutionTime()}ms)`);
}
}
getCommandReport(command: string): PerformanceReport {
const metrics = this.metrics.get(command);
if (!metrics) {
throw new Error(`No metrics found for command: ${command}`);
}
return {
command,
totalExecutions: metrics.getTotalExecutions(),
successRate: metrics.getSuccessRate(),
avgExecutionTime: metrics.getAverageExecutionTime(),
p95ExecutionTime: metrics.getP95ExecutionTime(),
avgMemoryUsage: metrics.getAverageMemoryUsage(),
recommendations: this.generateRecommendations(metrics)
};
}
}
Smart Auto-completion
Intelligent Command Completion
// src/cli/completion/intelligent-completion.ts
export class IntelligentCompletion {
constructor(
private learningService: LearningService,
private commandRegistry: ModularCommandRegistry
) {}
async generateCompletions(
partial: string,
context: CompletionContext
): Promise<Completion[]> {
const completions: Completion[] = [];
// 1. Exact command matches
const exactMatches = this.commandRegistry.findCommandsByPrefix(partial);
completions.push(...exactMatches.map(cmd => ({
value: cmd.name,
description: cmd.description,
type: 'command',
confidence: 1.0
})));
// 2. Learning-based suggestions
const learnedSuggestions = await this.learningService.suggestCommands(
partial,
context
);
completions.push(...learnedSuggestions);
// 3. Context-aware suggestions
const contextualSuggestions = await this.generateContextualSuggestions(
partial,
context
);
completions.push(...contextualSuggestions);
// Sort by confidence and relevance
return completions
.sort((a, b) => b.confidence - a.confidence)
.slice(0, 10); // Top 10 suggestions
}
private async generateContextualSuggestions(
partial: string,
context: CompletionContext
): Promise<Completion[]> {
const suggestions: Completion[] = [];
// If in git repository, suggest git-related commands
if (context.isGitRepository) {
if (partial.startsWith('git')) {
suggestions.push({
value: 'git commit',
description: 'Create git commit with generated message',
type: 'workflow',
confidence: 0.8
});
}
}
// If package.json exists, suggest npm commands
if (context.hasPackageJson) {
if (partial.startsWith('npm') || partial.startsWith('swarm')) {
suggestions.push({
value: 'swarm init',
description: 'Initialize swarm for this project',
type: 'workflow',
confidence: 0.9
});
}
}
return suggestions;
}
}
Success Metrics
CLI Performance Targets
- [ ] Command Response: <200ms average command execution time
- [ ] File Decomposition: index.ts (108KB) β <10KB per command module
- [ ] Interactive UX: Smart prompts with context awareness
- [ ] Hook Integration: Deep lifecycle integration with learning
- [ ] Workflow Automation: Intelligent multi-step command orchestration
- [ ] Auto-completion: >90% accuracy for command suggestions
User Experience Improvements
const cliImprovements = {
before: {
commandResponse: '~500ms',
interactivity: 'Basic command parsing',
workflows: 'Manual command chaining',
suggestions: 'Static help text'
},
after: {
commandResponse: '<200ms with caching',
interactivity: 'Smart context-aware prompts',
workflows: 'Automated multi-step execution',
suggestions: 'Learning-based intelligent completion'
}
};
Related V3 Skills
v3-core-implementation- Core domain integrationv3-memory-unification- Memory-backed command cachingv3-swarm-coordination- CLI swarm management integrationv3-performance-optimization- CLI performance monitoring
Usage Examples
Complete CLI Modernization
# Full CLI modernization implementation
Task("CLI modernization implementation",
"Implement modular commands, interactive prompts, and intelligent workflows",
"cli-hooks-developer")
Interactive Command Enhancement
# Enhanced interactive commands
claude-flow swarm init --interactive
claude-flow learning start --guided
claude-flow workflow create --from-intent "setup new project"
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.