ramidamolis-alt

performance-optimizer

0
0
# Install this skill:
npx skills add ramidamolis-alt/agent-skills-workflows --skill "performance-optimizer"

Install specific skill from multi-skill repository

# Description

Expert performance optimizer using ALL MCP servers. Uses MongoDB for metrics, UltraThink for analysis, Memory for benchmarks, and search MCPs for optimization techniques.

# SKILL.md


name: performance-optimizer
description: Expert performance optimizer using ALL MCP servers. Uses MongoDB for metrics, UltraThink for analysis, Memory for benchmarks, and search MCPs for optimization techniques.


⚑ Performance Optimizer Skill (Full MCP Integration)

Master performance optimizer using ALL 11 MCP servers.

MCP Performance Arsenal

MCP Server Performance Role
MongoDB Metrics storage, query analysis
UltraThink Bottleneck analysis
Memory Baseline benchmarks, patterns
Context7 Framework optimization docs
Filesystem Profiling files, configs
Brave/Tavily Modern optimization techniques
NotebookLM Deep performance research

Advanced Performance Patterns

1. Bottleneck Analysis with UltraThink

await mcp_UltraThink_ultrathink({
  thought: `
    # Performance Bottleneck Analysis

    ## Current Metrics
    - Response time: ${avgResponseTime}ms (p95: ${p95}ms)
    - Throughput: ${requestsPerSec} req/s
    - Error rate: ${errorRate}%
    - CPU: ${cpuUsage}%
    - Memory: ${memoryUsage}%

    ## Bottleneck Identification

    ### Hypothesis 1: Database
    - Evidence: Query time ${queryTime}ms
    - Analysis: ...
    - Confidence: 0.8

    ### Hypothesis 2: Network
    - Evidence: External API calls ${externalTime}ms
    - Analysis: ...
    - Confidence: 0.5

    ### Hypothesis 3: CPU-bound
    - Evidence: CPU at ${cpuUsage}%
    - Analysis: ...
    - Confidence: 0.3

    ## Primary Bottleneck: Database
    ## Optimization Strategy: ...
  `,
  total_thoughts: 25,
  confidence: 0.8
});

2. Query Optimization Pipeline (MongoDB)

// Get slow queries
const slowQueries = await mcp_MongoDB_aggregate(
  "performance", "query_logs",
  [
    { $match: { duration: { $gte: 100 } } },
    { $group: {
      _id: "$query_fingerprint",
      avgDuration: { $avg: "$duration" },
      count: { $sum: 1 },
      examples: { $push: "$query" }
    }},
    { $sort: { avgDuration: -1 } },
    { $limit: 10 }
  ]
);

// Analyze and optimize each
for (const query of slowQueries) {
  const explain = await mcp_MongoDB_explain(
    database, collection,
    ["find", { filter: query.examples[0] }],
    "executionStats"
  );

  await mcp_UltraThink_ultrathink({
    thought: `
      # Query Optimization: ${query._id}

      ## Current Performance
      - Avg duration: ${query.avgDuration}ms
      - Executions: ${query.count}
      - Total time impact: ${query.avgDuration * query.count}ms

      ## Explain Analysis
      - Stage: ${explain.stage}
      - Docs examined: ${explain.docsExamined}
      - Index used: ${explain.indexUsed || "NONE"}

      ## Optimization
      - Add index: ${suggestedIndex}
      - Rewrite query: ${rewrittenQuery}
      - Expected improvement: ${improvement}%
    `,
    total_thoughts: 15
  });
}

3. Baseline & Benchmark Tracking (Memory)

// Store baseline
await mcp_Memory_create_entities([{
  name: `Baseline_${component}_${date}`,
  entityType: "Baseline",
  observations: [
    `Response time p50: ${p50}ms`,
    `Response time p95: ${p95}ms`,
    `Response time p99: ${p99}ms`,
    `Throughput: ${rps} req/s`,
    `Memory: ${memory}MB`,
    `CPU: ${cpu}%`
  ]
}]);

// Compare with previous
const previousBaseline = await mcp_Memory_search_nodes(
  `Baseline ${component}`
);

await mcp_UltraThink_ultrathink({
  thought: `
    # Performance Comparison

    ## Current vs Previous
    | Metric | Current | Previous | Change |
    |--------|---------|----------|--------|
    | p50 | ${current.p50} | ${prev.p50} | ${diff}% |
    | p95 | ${current.p95} | ${prev.p95} | ${diff}% |
    | RPS | ${current.rps} | ${prev.rps} | ${diff}% |

    ## Analysis
    ${analysis}

    ## Recommendation
    ${recommendation}
  `,
  total_thoughts: 15
});

4. Framework Optimization Research

// Get framework-specific optimizations
const [docs, web] = await Promise.all([
  mcp_Context7_query-docs(
    frameworkLibraryId,
    "performance optimization caching"
  ),
  mcp_Brave_brave_web_search(
    `${framework} performance optimization 2026`
  )
]);

// Synthesize
await mcp_UltraThink_ultrathink({
  thought: `
    # ${framework} Performance Optimizations

    ## Official Documentation
    ${docs.recommendations}

    ## Community Best Practices (2026)
    ${web.techniques}

    ## Applicable to Our Project
    1. ...
    2. ...

    ## Priority Ranking
    1. Highest impact, lowest effort: ...
    2. ...
  `,
  total_thoughts: 20
});

5. Memory Profiling Pipeline

// Read heap dump/profile
const profileData = await mcp_Filesystem_read_file(
  heapDumpPath
);

await mcp_UltraThink_ultrathink({
  thought: `
    # Memory Profile Analysis

    ## Heap Summary
    - Total size: ${heapSize}MB
    - Used: ${usedSize}MB
    - Objects: ${objectCount}

    ## Top Memory Consumers
    ${topConsumers.map(c => `- ${c.type}: ${c.size}MB (${c.count} instances)`)}

    ## Memory Leak Suspects
    ${leakSuspects.map(s => `- ${s.description}: Growing ${s.rate}MB/hour`)}

    ## Optimization Actions
    1. ...
  `,
  total_thoughts: 20
});

Secret Performance Techniques

1. Performance Knowledge Graph

// Store optimization patterns
await mcp_Memory_create_entities([{
  name: `Optimization_${technique}`,
  entityType: "Optimization",
  observations: [
    `Context: ${whenToUse}`,
    `Before: ${beforeMetrics}`,
    `After: ${afterMetrics}`,
    `Improvement: ${improvement}%`,
    `Implementation: ${implementation}`,
    `Gotchas: ${gotchas}`
  ]
}]);

// Link to components
await mcp_Memory_create_relations([
  { from: "Optimization_Caching", to: "Component_UserService", relationType: "applied_to" }
]);

2. Automated Regression Detection

// Compare with baseline
const baseline = await mcp_Memory_search_nodes(
  `Baseline ${component}`
).sort((a, b) => b.timestamp - a.timestamp)[0];

const current = await collectMetrics();

if (current.p95 > baseline.p95 * 1.2) {
  // 20% regression
  await mcp_UltraThink_ultrathink({
    thought: `
      # Performance Regression Detected!

      ## Metrics
      - Baseline p95: ${baseline.p95}ms
      - Current p95: ${current.p95}ms
      - Regression: ${regression}%

      ## Recent Changes
      ${recentChanges}

      ## Likely Cause
      ${likelyCause}

      ## Recommended Fix
      ${fix}
    `,
    total_thoughts: 15
  });
}

3. Multi-Dimensional Optimization

await mcp_UltraThink_ultrathink({
  thought: `
    # Multi-Dimensional Optimization

    ## Trade-off Analysis

    | Dimension | Current | Target | Cost |
    |-----------|---------|--------|------|
    | Latency | ${latency}ms | ${targetLatency}ms | ${cost1} |
    | Throughput | ${rps} | ${targetRps} | ${cost2} |
    | Cost | $${cost}/mo | $${targetCost}/mo | - |

    ## Pareto Optimal Solutions
    1. Solution A: -20% latency, +10% cost
    2. Solution B: +50% throughput, +20% cost
    3. Solution C: -30% cost, +10% latency

    ## Recommendation
    Given priorities: ${priorities}
    Choose: Solution ${chosen}
  `,
  total_thoughts: 25
});

4. Real-time Metrics Pipeline

// Insert metrics to MongoDB
await mcp_MongoDB_insert-many(
  "performance", "metrics",
  metricsBuffer  // Collected over interval
);

// Aggregate for dashboards
const realtime = await mcp_MongoDB_aggregate(
  "performance", "metrics",
  [
    { $match: { timestamp: { $gte: fiveMinutesAgo } } },
    { $group: {
      _id: { 
        minute: { $dateToString: { format: "%Y-%m-%d %H:%M", date: "$timestamp" } }
      },
      avgLatency: { $avg: "$latency" },
      p95Latency: { $percentile: { input: "$latency", p: [0.95] } },
      errorRate: { $avg: { $cond: ["$error", 1, 0] } }
    }},
    { $sort: { "_id.minute": -1 } }
  ]
);

5. Optimization Playbook Generator

// Create reusable optimization playbook
const optimizations = await mcp_Memory_search_nodes("Optimization");

await mcp_Notion_API-post-page({
  parent: { database_id: playbooksDbId },
  properties: {
    title: [{ text: { content: "Performance Optimization Playbook" } }]
  },
  children: optimizations.map(opt => ({
    type: "toggle",
    toggle: {
      rich_text: [{ text: { content: opt.name } }],
      children: opt.observations.map(o => ({
        type: "bulleted_list_item",
        bulleted_list_item: { rich_text: [{ text: { content: o } }] }
      }))
    }
  }))
});

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.