sickn33

llm-app-patterns

2,844
621
# Install this skill:
npx skills add sickn33/antigravity-awesome-skills --skill "llm-app-patterns"

Install specific skill from multi-skill repository

# Description

Production-ready patterns for building LLM applications. Covers RAG pipelines, agent architectures, prompt IDEs, and LLMOps monitoring. Use when designing AI applications, implementing RAG, building agents, or setting up LLM observability.

# SKILL.md


name: llm-app-patterns
description: "Production-ready patterns for building LLM applications. Covers RAG pipelines, agent architectures, prompt IDEs, and LLMOps monitoring. Use when designing AI applications, implementing RAG, building agents, or setting up LLM observability."


πŸ€– LLM Application Patterns

Production-ready patterns for building LLM applications, inspired by Dify and industry best practices.

When to Use This Skill

Use this skill when:

  • Designing LLM-powered applications
  • Implementing RAG (Retrieval-Augmented Generation)
  • Building AI agents with tools
  • Setting up LLMOps monitoring
  • Choosing between agent architectures

1. RAG Pipeline Architecture

Overview

RAG (Retrieval-Augmented Generation) grounds LLM responses in your data.

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   Ingest    │────▢│   Retrieve  │────▢│   Generate  β”‚
β”‚  Documents  β”‚     β”‚   Context   β”‚     β”‚   Response  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
      β”‚                   β”‚                   β”‚
      β–Ό                   β–Ό                   β–Ό
 β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”       β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”       β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
 β”‚ Chunkingβ”‚       β”‚  Vector   β”‚       β”‚    LLM    β”‚
 β”‚Embeddingβ”‚       β”‚  Search   β”‚       β”‚  + Contextβ”‚
 β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

1.1 Document Ingestion

# Chunking strategies
class ChunkingStrategy:
    # Fixed-size chunks (simple but may break context)
    FIXED_SIZE = "fixed_size"  # e.g., 512 tokens

    # Semantic chunking (preserves meaning)
    SEMANTIC = "semantic"      # Split on paragraphs/sections

    # Recursive splitting (tries multiple separators)
    RECURSIVE = "recursive"    # ["\n\n", "\n", " ", ""]

    # Document-aware (respects structure)
    DOCUMENT_AWARE = "document_aware"  # Headers, lists, etc.

# Recommended settings
CHUNK_CONFIG = {
    "chunk_size": 512,       # tokens
    "chunk_overlap": 50,     # token overlap between chunks
    "separators": ["\n\n", "\n", ". ", " "],
}

1.2 Embedding & Storage

# Vector database selection
VECTOR_DB_OPTIONS = {
    "pinecone": {
        "use_case": "Production, managed service",
        "scale": "Billions of vectors",
        "features": ["Hybrid search", "Metadata filtering"]
    },
    "weaviate": {
        "use_case": "Self-hosted, multi-modal",
        "scale": "Millions of vectors",
        "features": ["GraphQL API", "Modules"]
    },
    "chromadb": {
        "use_case": "Development, prototyping",
        "scale": "Thousands of vectors",
        "features": ["Simple API", "In-memory option"]
    },
    "pgvector": {
        "use_case": "Existing Postgres infrastructure",
        "scale": "Millions of vectors",
        "features": ["SQL integration", "ACID compliance"]
    }
}

# Embedding model selection
EMBEDDING_MODELS = {
    "openai/text-embedding-3-small": {
        "dimensions": 1536,
        "cost": "$0.02/1M tokens",
        "quality": "Good for most use cases"
    },
    "openai/text-embedding-3-large": {
        "dimensions": 3072,
        "cost": "$0.13/1M tokens",
        "quality": "Best for complex queries"
    },
    "local/bge-large": {
        "dimensions": 1024,
        "cost": "Free (compute only)",
        "quality": "Comparable to OpenAI small"
    }
}

1.3 Retrieval Strategies

# Basic semantic search
def semantic_search(query: str, top_k: int = 5):
    query_embedding = embed(query)
    results = vector_db.similarity_search(
        query_embedding,
        top_k=top_k
    )
    return results

# Hybrid search (semantic + keyword)
def hybrid_search(query: str, top_k: int = 5, alpha: float = 0.5):
    """
    alpha=1.0: Pure semantic
    alpha=0.0: Pure keyword (BM25)
    alpha=0.5: Balanced
    """
    semantic_results = vector_db.similarity_search(query)
    keyword_results = bm25_search(query)

    # Reciprocal Rank Fusion
    return rrf_merge(semantic_results, keyword_results, alpha)

# Multi-query retrieval
def multi_query_retrieval(query: str):
    """Generate multiple query variations for better recall"""
    queries = llm.generate_query_variations(query, n=3)
    all_results = []
    for q in queries:
        all_results.extend(semantic_search(q))
    return deduplicate(all_results)

# Contextual compression
def compressed_retrieval(query: str):
    """Retrieve then compress to relevant parts only"""
    docs = semantic_search(query, top_k=10)
    compressed = llm.extract_relevant_parts(docs, query)
    return compressed

1.4 Generation with Context

RAG_PROMPT_TEMPLATE = """
Answer the user's question based ONLY on the following context.
If the context doesn't contain enough information, say "I don't have enough information to answer that."

Context:
{context}

Question: {question}

Answer:"""

def generate_with_rag(question: str):
    # Retrieve
    context_docs = hybrid_search(question, top_k=5)
    context = "\n\n".join([doc.content for doc in context_docs])

    # Generate
    prompt = RAG_PROMPT_TEMPLATE.format(
        context=context,
        question=question
    )

    response = llm.generate(prompt)

    # Return with citations
    return {
        "answer": response,
        "sources": [doc.metadata for doc in context_docs]
    }

2. Agent Architectures

2.1 ReAct Pattern (Reasoning + Acting)

Thought: I need to search for information about X
Action: search("X")
Observation: [search results]
Thought: Based on the results, I should...
Action: calculate(...)
Observation: [calculation result]
Thought: I now have enough information
Action: final_answer("The answer is...")
REACT_PROMPT = """
You are an AI assistant that can use tools to answer questions.

Available tools:
{tools_description}

Use this format:
Thought: [your reasoning about what to do next]
Action: [tool_name(arguments)]
Observation: [tool result - this will be filled in]
... (repeat Thought/Action/Observation as needed)
Thought: I have enough information to answer
Final Answer: [your final response]

Question: {question}
"""

class ReActAgent:
    def __init__(self, tools: list, llm):
        self.tools = {t.name: t for t in tools}
        self.llm = llm
        self.max_iterations = 10

    def run(self, question: str) -> str:
        prompt = REACT_PROMPT.format(
            tools_description=self._format_tools(),
            question=question
        )

        for _ in range(self.max_iterations):
            response = self.llm.generate(prompt)

            if "Final Answer:" in response:
                return self._extract_final_answer(response)

            action = self._parse_action(response)
            observation = self._execute_tool(action)
            prompt += f"\nObservation: {observation}\n"

        return "Max iterations reached"

2.2 Function Calling Pattern

# Define tools as functions with schemas
TOOLS = [
    {
        "name": "search_web",
        "description": "Search the web for current information",
        "parameters": {
            "type": "object",
            "properties": {
                "query": {
                    "type": "string",
                    "description": "Search query"
                }
            },
            "required": ["query"]
        }
    },
    {
        "name": "calculate",
        "description": "Perform mathematical calculations",
        "parameters": {
            "type": "object",
            "properties": {
                "expression": {
                    "type": "string",
                    "description": "Math expression to evaluate"
                }
            },
            "required": ["expression"]
        }
    }
]

class FunctionCallingAgent:
    def run(self, question: str) -> str:
        messages = [{"role": "user", "content": question}]

        while True:
            response = self.llm.chat(
                messages=messages,
                tools=TOOLS,
                tool_choice="auto"
            )

            if response.tool_calls:
                for tool_call in response.tool_calls:
                    result = self._execute_tool(
                        tool_call.name,
                        tool_call.arguments
                    )
                    messages.append({
                        "role": "tool",
                        "tool_call_id": tool_call.id,
                        "content": str(result)
                    })
            else:
                return response.content

2.3 Plan-and-Execute Pattern

class PlanAndExecuteAgent:
    """
    1. Create a plan (list of steps)
    2. Execute each step
    3. Replan if needed
    """

    def run(self, task: str) -> str:
        # Planning phase
        plan = self.planner.create_plan(task)
        # Returns: ["Step 1: ...", "Step 2: ...", ...]

        results = []
        for step in plan:
            # Execute each step
            result = self.executor.execute(step, context=results)
            results.append(result)

            # Check if replan needed
            if self._needs_replan(task, results):
                new_plan = self.planner.replan(
                    task,
                    completed=results,
                    remaining=plan[len(results):]
                )
                plan = new_plan

        # Synthesize final answer
        return self.synthesizer.summarize(task, results)

2.4 Multi-Agent Collaboration

class AgentTeam:
    """
    Specialized agents collaborating on complex tasks
    """

    def __init__(self):
        self.agents = {
            "researcher": ResearchAgent(),
            "analyst": AnalystAgent(),
            "writer": WriterAgent(),
            "critic": CriticAgent()
        }
        self.coordinator = CoordinatorAgent()

    def solve(self, task: str) -> str:
        # Coordinator assigns subtasks
        assignments = self.coordinator.decompose(task)

        results = {}
        for assignment in assignments:
            agent = self.agents[assignment.agent]
            result = agent.execute(
                assignment.subtask,
                context=results
            )
            results[assignment.id] = result

        # Critic reviews
        critique = self.agents["critic"].review(results)

        if critique.needs_revision:
            # Iterate with feedback
            return self.solve_with_feedback(task, results, critique)

        return self.coordinator.synthesize(results)

3. Prompt IDE Patterns

3.1 Prompt Templates with Variables

class PromptTemplate:
    def __init__(self, template: str, variables: list[str]):
        self.template = template
        self.variables = variables

    def format(self, **kwargs) -> str:
        # Validate all variables provided
        missing = set(self.variables) - set(kwargs.keys())
        if missing:
            raise ValueError(f"Missing variables: {missing}")

        return self.template.format(**kwargs)

    def with_examples(self, examples: list[dict]) -> str:
        """Add few-shot examples"""
        example_text = "\n\n".join([
            f"Input: {ex['input']}\nOutput: {ex['output']}"
            for ex in examples
        ])
        return f"{example_text}\n\n{self.template}"

# Usage
summarizer = PromptTemplate(
    template="Summarize the following text in {style} style:\n\n{text}",
    variables=["style", "text"]
)

prompt = summarizer.format(
    style="professional",
    text="Long article content..."
)

3.2 Prompt Versioning & A/B Testing

class PromptRegistry:
    def __init__(self, db):
        self.db = db

    def register(self, name: str, template: str, version: str):
        """Store prompt with version"""
        self.db.save({
            "name": name,
            "template": template,
            "version": version,
            "created_at": datetime.now(),
            "metrics": {}
        })

    def get(self, name: str, version: str = "latest") -> str:
        """Retrieve specific version"""
        return self.db.get(name, version)

    def ab_test(self, name: str, user_id: str) -> str:
        """Return variant based on user bucket"""
        variants = self.db.get_all_versions(name)
        bucket = hash(user_id) % len(variants)
        return variants[bucket]

    def record_outcome(self, prompt_id: str, outcome: dict):
        """Track prompt performance"""
        self.db.update_metrics(prompt_id, outcome)

3.3 Prompt Chaining

class PromptChain:
    """
    Chain prompts together, passing output as input to next
    """

    def __init__(self, steps: list[dict]):
        self.steps = steps

    def run(self, initial_input: str) -> dict:
        context = {"input": initial_input}
        results = []

        for step in self.steps:
            prompt = step["prompt"].format(**context)
            output = llm.generate(prompt)

            # Parse output if needed
            if step.get("parser"):
                output = step["parser"](output)

            context[step["output_key"]] = output
            results.append({
                "step": step["name"],
                "output": output
            })

        return {
            "final_output": context[self.steps[-1]["output_key"]],
            "intermediate_results": results
        }

# Example: Research β†’ Analyze β†’ Summarize
chain = PromptChain([
    {
        "name": "research",
        "prompt": "Research the topic: {input}",
        "output_key": "research"
    },
    {
        "name": "analyze",
        "prompt": "Analyze these findings:\n{research}",
        "output_key": "analysis"
    },
    {
        "name": "summarize",
        "prompt": "Summarize this analysis in 3 bullet points:\n{analysis}",
        "output_key": "summary"
    }
])

4. LLMOps & Observability

4.1 Metrics to Track

LLM_METRICS = {
    # Performance
    "latency_p50": "50th percentile response time",
    "latency_p99": "99th percentile response time",
    "tokens_per_second": "Generation speed",

    # Quality
    "user_satisfaction": "Thumbs up/down ratio",
    "task_completion": "% tasks completed successfully",
    "hallucination_rate": "% responses with factual errors",

    # Cost
    "cost_per_request": "Average $ per API call",
    "tokens_per_request": "Average tokens used",
    "cache_hit_rate": "% requests served from cache",

    # Reliability
    "error_rate": "% failed requests",
    "timeout_rate": "% requests that timed out",
    "retry_rate": "% requests needing retry"
}

4.2 Logging & Tracing

import logging
from opentelemetry import trace

tracer = trace.get_tracer(__name__)

class LLMLogger:
    def log_request(self, request_id: str, data: dict):
        """Log LLM request for debugging and analysis"""
        log_entry = {
            "request_id": request_id,
            "timestamp": datetime.now().isoformat(),
            "model": data["model"],
            "prompt": data["prompt"][:500],  # Truncate for storage
            "prompt_tokens": data["prompt_tokens"],
            "temperature": data.get("temperature", 1.0),
            "user_id": data.get("user_id"),
        }
        logging.info(f"LLM_REQUEST: {json.dumps(log_entry)}")

    def log_response(self, request_id: str, data: dict):
        """Log LLM response"""
        log_entry = {
            "request_id": request_id,
            "completion_tokens": data["completion_tokens"],
            "total_tokens": data["total_tokens"],
            "latency_ms": data["latency_ms"],
            "finish_reason": data["finish_reason"],
            "cost_usd": self._calculate_cost(data),
        }
        logging.info(f"LLM_RESPONSE: {json.dumps(log_entry)}")

# Distributed tracing
@tracer.start_as_current_span("llm_call")
def call_llm(prompt: str) -> str:
    span = trace.get_current_span()
    span.set_attribute("prompt.length", len(prompt))

    response = llm.generate(prompt)

    span.set_attribute("response.length", len(response))
    span.set_attribute("tokens.total", response.usage.total_tokens)

    return response.content

4.3 Evaluation Framework

class LLMEvaluator:
    """
    Evaluate LLM outputs for quality
    """

    def evaluate_response(self,
                          question: str,
                          response: str,
                          ground_truth: str = None) -> dict:
        scores = {}

        # Relevance: Does it answer the question?
        scores["relevance"] = self._score_relevance(question, response)

        # Coherence: Is it well-structured?
        scores["coherence"] = self._score_coherence(response)

        # Groundedness: Is it based on provided context?
        scores["groundedness"] = self._score_groundedness(response)

        # Accuracy: Does it match ground truth?
        if ground_truth:
            scores["accuracy"] = self._score_accuracy(response, ground_truth)

        # Harmfulness: Is it safe?
        scores["safety"] = self._score_safety(response)

        return scores

    def run_benchmark(self, test_cases: list[dict]) -> dict:
        """Run evaluation on test set"""
        results = []
        for case in test_cases:
            response = llm.generate(case["prompt"])
            scores = self.evaluate_response(
                question=case["prompt"],
                response=response,
                ground_truth=case.get("expected")
            )
            results.append(scores)

        return self._aggregate_scores(results)

5. Production Patterns

5.1 Caching Strategy

import hashlib
from functools import lru_cache

class LLMCache:
    def __init__(self, redis_client, ttl_seconds=3600):
        self.redis = redis_client
        self.ttl = ttl_seconds

    def _cache_key(self, prompt: str, model: str, **kwargs) -> str:
        """Generate deterministic cache key"""
        content = f"{model}:{prompt}:{json.dumps(kwargs, sort_keys=True)}"
        return hashlib.sha256(content.encode()).hexdigest()

    def get_or_generate(self, prompt: str, model: str, **kwargs) -> str:
        key = self._cache_key(prompt, model, **kwargs)

        # Check cache
        cached = self.redis.get(key)
        if cached:
            return cached.decode()

        # Generate
        response = llm.generate(prompt, model=model, **kwargs)

        # Cache (only cache deterministic outputs)
        if kwargs.get("temperature", 1.0) == 0:
            self.redis.setex(key, self.ttl, response)

        return response

5.2 Rate Limiting & Retry

import time
from tenacity import retry, wait_exponential, stop_after_attempt

class RateLimiter:
    def __init__(self, requests_per_minute: int):
        self.rpm = requests_per_minute
        self.timestamps = []

    def acquire(self):
        """Wait if rate limit would be exceeded"""
        now = time.time()

        # Remove old timestamps
        self.timestamps = [t for t in self.timestamps if now - t < 60]

        if len(self.timestamps) >= self.rpm:
            sleep_time = 60 - (now - self.timestamps[0])
            time.sleep(sleep_time)

        self.timestamps.append(time.time())

# Retry with exponential backoff
@retry(
    wait=wait_exponential(multiplier=1, min=4, max=60),
    stop=stop_after_attempt(5)
)
def call_llm_with_retry(prompt: str) -> str:
    try:
        return llm.generate(prompt)
    except RateLimitError:
        raise  # Will trigger retry
    except APIError as e:
        if e.status_code >= 500:
            raise  # Retry server errors
        raise  # Don't retry client errors

5.3 Fallback Strategy

class LLMWithFallback:
    def __init__(self, primary: str, fallbacks: list[str]):
        self.primary = primary
        self.fallbacks = fallbacks

    def generate(self, prompt: str, **kwargs) -> str:
        models = [self.primary] + self.fallbacks

        for model in models:
            try:
                return llm.generate(prompt, model=model, **kwargs)
            except (RateLimitError, APIError) as e:
                logging.warning(f"Model {model} failed: {e}")
                continue

        raise AllModelsFailedError("All models exhausted")

# Usage
llm_client = LLMWithFallback(
    primary="gpt-4-turbo",
    fallbacks=["gpt-3.5-turbo", "claude-3-sonnet"]
)

Architecture Decision Matrix

Pattern Use When Complexity Cost
Simple RAG FAQ, docs search Low Low
Hybrid RAG Mixed queries Medium Medium
ReAct Agent Multi-step tasks Medium Medium
Function Calling Structured tools Low Low
Plan-Execute Complex tasks High High
Multi-Agent Research tasks Very High Very High

Resources

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.