yzlnew

slime-user

51
3
# Install this skill:
npx skills add yzlnew/infra-skills --skill "slime-user"

Install specific skill from multi-skill repository

# Description

Guide for using SLIME (LLM post-training framework for RL Scaling). Use when working with SLIME for reinforcement learning training of language models, including setup, configuration, training execution, multi-turn interactions, custom reward models, tool calling scenarios, or troubleshooting SLIME workflows. Covers GRPO, GSPO, PPO, Reinforce++, multi-agent RL, VLM training, FSDP/Megatron backends, SGLang integration, dynamic sampling, and custom generation functions.

# SKILL.md


name: slime-user
description: Guide for using SLIME (LLM post-training framework for RL Scaling). Use when working with SLIME for reinforcement learning training of language models, including setup, configuration, training execution, multi-turn interactions, custom reward models, tool calling scenarios, or troubleshooting SLIME workflows. Covers GRPO, GSPO, PPO, Reinforce++, multi-agent RL, VLM training, FSDP/Megatron backends, SGLang integration, dynamic sampling, and custom generation functions.


SLIME User Guide

SLIME is an LLM post-training framework for RL Scaling developed by THUDM. It supports various RL algorithms (GRPO, GSPO, PPO, Reinforce++), multiple training backends (Megatron, FSDP), and advanced features like multi-turn interactions, tool calling, and dynamic sampling.

Quick Start Workflow

For First-Time Users

  1. Environment Setup
  2. Use Docker: docker pull slimerl/slime:latest
  3. Or build from source: See docs/en/get_started/quick_start.md
  4. Hardware: Supports H100/H200, B200 series

  5. Download Model and Data
    bash hf download Qwen/Qwen3-4B --local-dir /root/Qwen3-4B hf download --repo-type dataset zhuzilin/dapo-math-17k --local-dir /root/dapo-math-17k

  6. Convert Weights (Megatron backend only)
    bash source scripts/models/qwen3-4B.sh PYTHONPATH=/root/Megatron-LM python tools/convert_hf_to_torch_dist.py \ ${MODEL_ARGS[@]} \ --hf-checkpoint /root/Qwen3-4B \ --save /root/Qwen3-4B_torch_dist

  7. Run Training
    bash bash scripts/run-qwen3-4B.sh

For Experienced Users

When user needs specific functionality:
- Multi-turn/tool calling: Read references/examples_reference.md Search-R1 section
- Custom reward models: See custom RM pattern in examples reference
- FSDP instead of Megatron: Use --train-backend fsdp, skip weight conversion
- Large-scale training: See multi-node examples (GLM-4.5, DeepSeek-R1)
- Source code exploration: Check references/source_code_reference.md

Documentation Navigation

SLIME has extensive documentation. Use this guide to find what you need quickly.

Essential Documentation (Read These First)

  1. Quick Start Guide: docs/en/get_started/quick_start.md - Setup and first training run
  2. Usage Guide: docs/en/get_started/usage.md - Comprehensive parameter reference
  3. Example Docs: docs/en/examples/qwen3-4B.md or docs/en/examples/glm4-9B.md

For detailed navigation of all documentation, see references/doc_navigation.md.

Common Tasks β†’ Documentation Mapping

Task Documentation
First-time setup docs/en/get_started/quick_start.md
Understanding parameters docs/en/get_started/usage.md
Basic training (8 GPUs) docs/en/examples/qwen3-4B.md
Multi-turn tool use examples/search-r1/
Custom generation logic docs/en/get_started/customization.md
Multi-node training docs/en/examples/glm4.5-355B-A32B.md
FSDP backend docs/en/get_started/usage.md (FSDP section)
VLM training examples/geo3k_vlm/
Troubleshooting docs/en/get_started/qa.md

Core Concepts

Training Loop

SLIME uses a "Rollout β†’ Train" loop:
1. Rollout: Generate responses using SGLang inference
2. Reward: Compute rewards using reward model
3. Train: Update model weights using Megatron/FSDP
4. Repeat for --num-rollout iterations

Key Constraint

rollout-batch-size Γ— n-samples-per-prompt = global-batch-size Γ— num-steps-per-rollout

Resource Allocation Modes

Colocated (training and inference share GPUs):

--actor-num-nodes 1 \
--actor-num-gpus-per-node 8 \
--colocate \
--sglang-mem-fraction-static 0.7

Disaggregated (separate GPUs for training/inference):

--actor-num-nodes 1 \
--actor-num-gpus-per-node 4 \
--rollout-num-gpus 4

Parameter Quick Reference

Essential Parameters

Model Loading:
- --hf-checkpoint: HuggingFace model path (for SGLang and FSDP)
- --ref-load: Megatron reference model checkpoint
- --load: Megatron actor checkpoint (resume training)
- --save: Save path for checkpoints

Data:
- --prompt-data: JSONL dataset path
- --input-key: Field name for prompts (default: "prompt")
- --label-key: Field name for labels (default: "label")
- --metadata-key: Field name for metadata (default: "metadata")
- --apply-chat-template: Apply tokenizer chat template

Rollout:
- --rollout-batch-size: Prompts per rollout
- --n-samples-per-prompt: Responses per prompt
- --rollout-max-response-len: Max response length
- --rollout-temperature: Sampling temperature

Training:
- --num-rollout: Total training iterations
- --num-steps-per-rollout: Optimizer steps per rollout (default: 1)
- --global-batch-size: Samples per optimizer step
- --advantage-estimator: RL algorithm (grpo, gspo, ppo, reinforce_plus_plus)

Reward Model:
- --rm-type: Built-in RM type (e.g., "deepscaler")
- --custom-rm-path: Custom RM function path

Backends:
- --train-backend: Training backend (megatron or fsdp)
- --rollout-num-gpus-per-engine: GPUs per SGLang engine (like tp_size)

For complete parameter reference, see docs/en/get_started/usage.md.

Common Workflows

1. Standard Single-Turn Training

Use example scripts as templates:
- scripts/run-qwen3-4B.sh: Basic 8xH100 setup
- scripts/run-glm4-9B.sh: With dynamic sampling

Key sections in script:

# Load model config
source scripts/models/qwen3-4B.sh

# Configure checkpoints
CKPT_ARGS=(--hf-checkpoint /root/Qwen3-4B ...)

# Configure rollout
ROLLOUT_ARGS=(
  --rollout-batch-size 32
  --n-samples-per-prompt 8
  --rm-type deepscaler
)

# Configure algorithm
GRPO_ARGS=(--advantage-estimator grpo ...)

# Run training
ray job submit ... -- python3 train.py \
  ${MODEL_ARGS[@]} ${CKPT_ARGS[@]} ${ROLLOUT_ARGS[@]} ...

2. Multi-Turn Tool Calling

For multi-turn scenarios (like Search-R1):

  1. Prepare Data with metadata:
    json { "question": "User query", "final_answer": "Expected answer", "metadata": "{\"session_id\": \"123\", \"tool_code\": \"...\"}" }

  2. Implement Custom Generation Function:
    ```python
    async def generate(args, sample: Sample, sampling_params) -> Sample:
    for turn in range(max_turns):
    # Generate action
    model_output = await call_sglang(...)
    sample.loss_mask += [1] * len(model_tokens) # Train on actions

       # Execute tool
       tool_output = await execute_tool(...)
       sample.loss_mask += [0] * len(tool_tokens)  # Mask tool outputs
    
       if action == "answer":
           break
    

    sample.tokens = prompt_tokens + response_tokens
    sample.response_length = len(response_tokens)
    return sample
    ```

  3. Configure Custom Functions:
    bash --custom-generate-function-path my_module.generate \ --custom-rm-path my_module.reward_func \ --metadata-key metadata

See examples/search-r1/ for complete example.

3. Dynamic Sampling (DAPO-style)

Filter low-quality samples during generation:

ROLLOUT_ARGS+=(
  --over-sampling-batch-size 64 \
  --rollout-batch-size 32 \
  --dynamic-sampling-filter-path \
    slime.rollout.filter_hub.dynamic_sampling_filters.check_reward_nonzero_std
)

How it works:
- Samples 64 prompts (over-sampling)
- Filters groups based on reward diversity
- Keeps only 32 prompts Γ— 8 samples that pass filter
- Automatically resamples if too many filtered out

4. FSDP Backend (No Weight Conversion)

--train-backend fsdp \
--hf-checkpoint /root/Qwen3-4B \
--gradient-checkpointing \
--context-parallel-size 2

Benefits:
- No HF β†’ Megatron weight conversion needed
- Directly load HuggingFace checkpoints
- Simpler setup for supported models

See examples/geo3k_vlm/ and docs/en/get_started/usage.md FSDP section.

5. Multi-Node Training

  1. Start Ray cluster:
    ```bash
    # Head node
    ray start --head --node-ip-address ${MASTER_ADDR} --num-gpus 8

# Worker nodes
ray start --address=${MASTER_ADDR}:6379 --num-gpus 8
```

  1. Submit job:
    bash ray job submit --address="http://127.0.0.1:8265" \ --runtime-env-json='{"env_vars": {"PYTHONPATH": "/root/Megatron-LM/"}}' \ -- python3 train.py \ --actor-num-nodes 8 \ --actor-num-gpus-per-node 8 \ ...

See docs/en/examples/glm4.5-355B-A32B.md for large-scale example.

Customization Guide

Custom Reward Model

Implement async function:

async def my_reward_func(args, sample: Sample, **kwargs) -> float:
    # Access sample fields
    prompt = sample.prompt
    response = sample.response
    label = sample.label

    # Compute reward
    reward = compute_score(response, label)
    return float(reward)

Use with: --custom-rm-path module.path:my_reward_func

Custom Generation Function

Implement async function:

async def my_generate(args, sample: Sample, sampling_params) -> Sample:
    # Load tokenizer
    from slime.utils.processing_utils import load_tokenizer
    tokenizer = load_tokenizer(args.hf_checkpoint, trust_remote_code=True)

    # Generate response (call SGLang API or custom logic)
    from slime.utils.http_utils import post
    output = await post(
        f"http://{args.sglang_router_ip}:{args.sglang_router_port}/generate",
        {"text": sample.prompt, "sampling_params": sampling_params}
    )

    # Set sample fields
    prompt_tokens = tokenizer(sample.prompt, add_special_tokens=False)["input_ids"]
    response_tokens = tokenizer(output["text"], add_special_tokens=False)["input_ids"]

    sample.tokens = prompt_tokens + response_tokens
    sample.response_length = len(response_tokens)
    sample.response = output["text"]
    sample.truncated = output["meta_info"]["finish_reason"]["type"] == "length"

    return sample

Use with: --custom-generate-function-path module.path:my_generate

Custom Dynamic Filter

Implement filter function:

def my_filter(args, samples: list[Sample], **kwargs) -> bool:
    # Return True to keep samples, False to discard
    return all(sample.reward > 0.5 for sample in samples)

Use with: --dynamic-sampling-filter-path module.path:my_filter

Examples Reference

For detailed examples and patterns, see references/examples_reference.md.

Quick finder:
- Basic math training: scripts/run-qwen3-4B.sh
- Multi-turn tool use: examples/search-r1/
- Vision-language RL: examples/geo3k_vlm/
- Large-scale MOE: docs/en/examples/glm4.5-355B-A32B.md
- Custom generation: examples/search-r1/search_r1_logic.py
- FSDP backend: examples/geo3k_vlm/

Source Code Reference

For source code exploration, see references/source_code_reference.md.

Key files:
- Arguments: slime/utils/arguments.py
- Rollout: slime/rollout/sglang_rollout.py
- Sample type: slime/utils/types.py
- Reward models: slime/rollout/rm_hub/
- Conversion tools: tools/convert_hf_to_torch_dist.py

Troubleshooting

Common Issues

OOM during colocated training:
- Reduce --sglang-mem-fraction-static (try 0.7 or 0.6)
- Reduce --max-tokens-per-gpu
- Enable gradient checkpointing: --recompute-granularity full

Mismatched batch sizes:
- Ensure: rollout-batch-size Γ— n-samples-per-prompt = global-batch-size Γ— num-steps-per-rollout

Weight conversion errors:
- Check model config matches exactly (e.g., --rotary-base)
- Use FSDP backend to skip conversion: --train-backend fsdp

Multi-node communication issues:
- Set environment variables: GLOO_SOCKET_IFNAME, NCCL_SOCKET_IFNAME
- See docs/en/get_started/quick_start.md multi-node section

SGLang concurrency issues:
- Limit concurrency: --sglang-server-concurrency 160
- Increase CUDA graphs: --sglang-cuda-graph-bs 1 2 4 8 $(seq 16 8 256)

For more troubleshooting, see docs/en/get_started/qa.md.

Additional Resources

Reference Files

  • GitHub Repository: https://github.com/THUDM/slime
  • Docker Image: slimerl/slime:latest
  • Megatron-LM: https://github.com/NVIDIA/Megatron-LM
  • SGLang: https://github.com/sgl-project/sglang

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.