Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add Art-of-Technology/anti-fraud-skill
Or install specific skill: npx add-skill https://github.com/Art-of-Technology/anti-fraud-skill
# Description
Multi-layered anti-fraud and bot detection system for registration flows. Use when implementing: (1) Registration form security, (2) Bot detection and shadow banning, (3) Behavioral analysis (keystroke, mouse tracking), (4) Risk scoring systems, (5) Honeypot field implementation, (6) Disposable email detection, or any fraud prevention for user registration
# SKILL.md
name: anti-fraud
description: "Multi-layered anti-fraud and bot detection system for registration flows. Use when implementing: (1) Registration form security, (2) Bot detection and shadow banning, (3) Behavioral analysis (keystroke, mouse tracking), (4) Risk scoring systems, (5) Honeypot field implementation, (6) Disposable email detection, or any fraud prevention for user registration"
Anti-Fraud & Bot Detection System
A three-layer defense system for registration forms that detects bots while minimizing false positives for legitimate users.
Architecture Overview
Layer 1: SERVER-SIDE (tamper-proof)
├── Encrypted timestamp token verification
├── Device fingerprint matching
└── Minimum fill time enforcement (3s)
Layer 2: MANIPULATION DETECTION (server comparison)
├── Client vs Server timing mismatch
├── Keystroke/input inconsistency
└── Impossible value detection
Layer 3: CLIENT SIGNALS (informational)
├── Honeypot fields
├── Behavioral analysis
└── Content analysis
Key Principle: Never trust client-side data alone.
Quick Implementation
1. Form Token Endpoint
// /api/auth/form-token
// Generate AES-256-GCM encrypted token with timestamp
const token = encrypt({ timestamp: Date.now(), fingerprint, nonce });
2. Behavior Tracking Hook
interface BehaviorSignals {
totalFillTimeMs: number;
fieldTimings: Record<string, number>;
inputMethods: Record<string, 'typed' | 'pasted' | 'autofilled' | 'mixed'>;
keystrokes: KeystrokeData[];
keystrokeVariance: number;
mouseMovements: MouseMovement[];
hasMouseActivity: boolean;
focusSequence: string[];
tabKeyUsed: boolean;
backspaceCount: number;
}
3. Honeypot Fields
Add hidden fields (CSS hidden, aria-hidden, tabIndex=-1):
- website, phone2, address, company
Any content in honeypot → Instant shadow ban
Risk Scoring
Shadow Ban Triggers (ANY = ban)
| Trigger | Condition |
|---|---|
| Server timing | Fill time < 3 seconds |
| Token | Invalid or missing |
| Manipulation | High confidence detection |
| Score | >= 80 points |
| Honeypot | Any field filled |
| Disposable domain |
Signal Weights
See references/signal-weights.md for complete weight tables.
Critical (+100): HONEYPOT_FILLED, DISPOSABLE_EMAIL
High (+25-40): INSTANT_SUBMIT, ALL_FIELDS_PASTED, BOT_PASSWORD_PATTERN, NO_MOUSE_MOVEMENT
Positive (-5 to -40): PASSWORD_MANAGER_LIKELY, KEYBOARD_ONLY_USER, NATURAL_TYPING_RHYTHM
Shadow Ban Response
if (shouldShadowBan) {
await delay(1000 + Math.random() * 2000); // Appear legitimate
return Response.json({ message: 'Registration successful' }, { status: 200 });
// No account created, no backend call
}
False Positive Prevention
Password Manager Detection (-40 points)
const isPasswordManager =
allFieldsAutofilledOrPasted &&
keystrokeCount < 5 &&
fillTime >= 1000 && fillTime < 15000;
Keyboard-Only User Detection (-15 points)
const isKeyboardOnly =
tabKeyUsed &&
focusSequence.length >= 2 &&
!hasMouseActivity &&
totalFieldTime > 1000;
File Structure
src/
├── lib/anti-fraud/
│ ├── index.ts
│ ├── types.ts
│ ├── constants.ts
│ ├── risk-scoring.ts
│ ├── server-token.ts
│ ├── manipulation-detector.ts
│ └── validators/
│ ├── email-validator.ts
│ ├── name-validator.ts
│ └── password-validator.ts
├── hooks/use-behavior-tracking.ts
├── components/anti-fraud/honeypot-fields.tsx
└── app/api/auth/
├── form-token/route.ts
└── register/route.ts
Resources
- Signal weights & thresholds: See
references/signal-weights.md - Validators (email, name, password): See
references/validators.md - XML patterns & detection: See
references/detection-patterns.md
Environment
AUTH_SECRET=your-secret-key-for-token-encryption
Logging
All decisions logged with [ANTI_FRAUD] prefix:
[ANTI_FRAUD] { timestamp, emailDomain, serverFillTimeMs, summary: 'Risk: 25/100 (low) - allow' }
# README.md
🛡️ Anti-Fraud Skill
A multi-layered bot detection and fraud prevention system for registration flows. This skill teaches AI coding agents how to implement comprehensive anti-fraud measures that catch bots while protecting legitimate users.
Installation
# Using skills CLI
npx skills add Art-of-Technology/anti-fraud-skill
# Or with Claude Code
/install-skill Art-of-Technology/anti-fraud-skill
What This Skill Does
Provides a complete anti-fraud implementation guide with:
- 3-Layer Defense Architecture - Server-side verification, manipulation detection, and behavioral analysis
- Shadow Banning - Silent rejection that wastes attacker time without revealing detection
- Smart Risk Scoring - 20+ weighted signals with automatic threshold tuning
- False Positive Prevention - Detects password managers and accessibility users to avoid blocking legitimate users
Architecture Overview
┌─────────────────────────────────────────────────┐
│ LAYER 1: SERVER-SIDE │
│ (Tamper-proof) │
│ • Encrypted timestamp tokens │
│ • Device fingerprint matching │
│ • Minimum 3-second fill time │
└─────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────┐
│ LAYER 2: MANIPULATION DETECTION │
│ (Server-side comparison) │
│ • Client vs server timing mismatch │
│ • Keystroke inconsistency detection │
│ • Impossible value detection │
└─────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────┐
│ LAYER 3: CLIENT SIGNALS │
│ (Behavioral analysis) │
│ • Honeypot fields │
│ • Mouse movement patterns │
│ • Keystroke dynamics │
└─────────────────────────────────────────────────┘
Key Features
🚫 Shadow Ban Triggers
| Trigger | Action |
|---|---|
| Fill time < 3 seconds | Instant ban |
| Honeypot field filled | Instant ban |
| Disposable email domain | Instant ban |
| Risk score ≥ 80 | Instant ban |
| High-confidence manipulation | Instant ban |
✅ False Positive Protection
| User Type | Detection | Score Adjustment |
|---|---|---|
| Password Manager | Fast autofill, few keystrokes | -40 points |
| Keyboard-Only User | Tab navigation, no mouse | -15 points |
| Natural Typing | 20-200ms variance | -10 points |
📊 Risk Scoring
Signals are weighted and combined:
- Critical (+100): Honeypot filled, disposable email
- High (+25-40): Instant submit, all fields pasted, bot password patterns
- Medium (+15-25): Keyboard patterns in name, linear mouse movement
- Low (+5-10): No backspaces, uniform keystroke timing
File Structure
anti-fraud-skill/
├── SKILL.md # Main skill instructions
└── references/
├── signal-weights.md # Complete scoring tables
├── validators.md # Email, name, password validators
└── detection-patterns.md # Behavioral analysis code
Usage Example
Ask your AI agent:
"Implement anti-fraud protection for my registration form"
"Add bot detection with shadow banning to my signup flow"
"Create a risk scoring system for user registration"
The agent will use this skill to generate a complete implementation with all three defense layers.
Tech Stack Compatibility
- Backend: Node.js, Next.js, Express, any server-side framework
- Frontend: React, Vue, vanilla JavaScript
- Database: Any (logging and monitoring)
Requirements
AUTH_SECRETenvironment variable for token encryption- AES-256-GCM encryption support (Node.js crypto)
Contributing
Issues and PRs welcome! If you have ideas for new detection signals or false positive improvements, please contribute.
License
MIT
Stop bots. Protect users. Ship with confidence.
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.