Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add OmidZamani/dspy-skills --skill "dspy-debugging-observability"
Install specific skill from multi-skill repository
# Description
This skill should be used when the user asks to "debug DSPy programs", "trace LLM calls", "monitor production DSPy", "use MLflow with DSPy", mentions "inspect_history", "custom callbacks", "observability", "production monitoring", "cost tracking", or needs to debug, trace, and monitor DSPy applications in development and production.
# SKILL.md
name: dspy-debugging-observability
version: "1.0.0"
dspy-compatibility: "3.1.2"
description: This skill should be used when the user asks to "debug DSPy programs", "trace LLM calls", "monitor production DSPy", "use MLflow with DSPy", mentions "inspect_history", "custom callbacks", "observability", "production monitoring", "cost tracking", or needs to debug, trace, and monitor DSPy applications in development and production.
allowed-tools:
- Read
- Write
- Glob
- Grep
DSPy Debugging & Observability
Goal
Debug, trace, and monitor DSPy programs using built-in inspection, MLflow tracing, and custom callbacks for production observability.
When to Use
- Debugging unexpected outputs
- Understanding multi-step program flow
- Production monitoring (cost, latency, errors)
- Analyzing optimizer behavior
- Tracking LLM API usage
Related Skills
- Optimize programs: dspy-miprov2-optimizer
- Evaluate quality: dspy-evaluation-suite
- Build agents: dspy-react-agent-builder
Inputs
| Input | Type | Description |
|---|---|---|
program |
dspy.Module |
Program to debug/monitor |
callback |
BaseCallback |
Optional custom callback (subclass of dspy.utils.callback.BaseCallback) |
Outputs
| Output | Type | Description |
|---|---|---|
GLOBAL_HISTORY |
list[dict] |
Raw execution trace from dspy.clients.base_lm |
metrics |
dict |
Cost, latency, token counts from callbacks |
Workflow
Phase 1: Basic Inspection with inspect_history()
The simplest debugging approach:
import dspy
dspy.configure(lm=dspy.LM("openai/gpt-4o-mini"))
# Run program
qa = dspy.ChainOfThought("question -> answer")
result = qa(question="What is the capital of France?")
# Inspect last execution (prints to console)
dspy.inspect_history(n=1)
# To access raw history programmatically:
from dspy.clients.base_lm import GLOBAL_HISTORY
for entry in GLOBAL_HISTORY[-1:]:
print(f"Model: {entry['model']}")
print(f"Usage: {entry.get('usage', {})}")
print(f"Cost: {entry.get('cost', 0)}")
Phase 2: MLflow Tracing
MLflow integration requires explicit setup:
import dspy
import mlflow
# Setup MLflow (4 steps required)
# 1. Set tracking URI and experiment
mlflow.set_tracking_uri("http://localhost:5000")
mlflow.set_experiment("DSPy")
# 2. Enable DSPy autologging
mlflow.dspy.autolog(
log_traces=True, # Log traces during inference
log_traces_from_compile=True, # Log traces when compiling/optimizing
log_traces_from_eval=True, # Log traces during evaluation
log_compiles=True, # Log optimization process info
log_evals=True # Log evaluation call info
)
dspy.configure(lm=dspy.LM("openai/gpt-4o-mini"))
# Configure retriever (required before using dspy.Retrieve)
rm = dspy.ColBERTv2(url="http://20.102.90.50:2017/wiki17_abstracts")
dspy.configure(rm=rm)
class RAGPipeline(dspy.Module):
def __init__(self):
self.retrieve = dspy.Retrieve(k=3)
self.generate = dspy.ChainOfThought("context, question -> answer")
def forward(self, question):
context = self.retrieve(question).passages
return self.generate(context=context, question=question)
pipeline = RAGPipeline()
result = pipeline(question="What is machine learning?")
# View traces in MLflow UI (run in terminal): mlflow ui --port 5000
MLflow captures LLM calls, token usage, costs, and execution times when autolog is enabled.
Phase 3: Custom Callbacks for Production
Build custom callbacks for specialized monitoring:
import dspy
from dspy.utils.callback import BaseCallback
import logging
import time
from typing import Any
logger = logging.getLogger(__name__)
class ProductionMonitoringCallback(BaseCallback):
"""Track cost, latency, and errors in production."""
def __init__(self):
super().__init__()
self.total_cost = 0.0
self.total_tokens = 0
self.call_count = 0
self.errors = []
self.start_times = {}
def on_lm_start(self, call_id: str, instance: Any, inputs: dict[str, Any]):
"""Called when LM is invoked."""
self.start_times[call_id] = time.time()
def on_lm_end(self, call_id: str, outputs: dict[str, Any] | None, exception: Exception | None = None):
"""Called after LM finishes."""
if exception:
self.errors.append(str(exception))
logger.error(f"LLM error: {exception}")
return
# Calculate latency
start = self.start_times.pop(call_id, time.time())
latency = time.time() - start
# Extract usage from outputs
usage = outputs.get('usage', {}) if isinstance(outputs, dict) else {}
tokens = usage.get('total_tokens', 0)
model = outputs.get('model', 'unknown') if isinstance(outputs, dict) else 'unknown'
cost = self._estimate_cost(model, usage)
self.total_tokens += tokens
self.total_cost += cost
self.call_count += 1
logger.info(f"LLM call: {latency:.2f}s, {tokens} tokens, ${cost:.4f}")
def _estimate_cost(self, model: str, usage: dict[str, int]) -> float:
"""Estimate cost based on model pricing (update rates for 2026)."""
pricing = {
'gpt-4o-mini': {'input': 0.00015 / 1000, 'output': 0.0006 / 1000},
'gpt-4o': {'input': 0.0025 / 1000, 'output': 0.01 / 1000},
}
model_key = next((k for k in pricing if k in model), 'gpt-4o-mini')
input_cost = usage.get('prompt_tokens', 0) * pricing[model_key]['input']
output_cost = usage.get('completion_tokens', 0) * pricing[model_key]['output']
return input_cost + output_cost
def get_metrics(self) -> dict[str, Any]:
"""Return aggregated metrics."""
return {
'total_cost': self.total_cost,
'total_tokens': self.total_tokens,
'call_count': self.call_count,
'avg_cost_per_call': self.total_cost / max(self.call_count, 1),
'error_count': len(self.errors)
}
# Usage
monitor = ProductionMonitoringCallback()
dspy.configure(lm=dspy.LM("openai/gpt-4o-mini"), callbacks=[monitor])
# Run your program
qa = dspy.ChainOfThought("question -> answer")
for question in questions:
result = qa(question=question)
# Get metrics
metrics = monitor.get_metrics()
print(f"Total cost: ${metrics['total_cost']:.2f}")
print(f"Total calls: {metrics['call_count']}")
print(f"Errors: {metrics['error_count']}")
Phase 4: Sampling for High-Volume Production
For high-traffic applications, sample traces to reduce overhead:
import random
from dspy.utils.callback import BaseCallback
from typing import Any
class SamplingCallback(BaseCallback):
"""Sample 10% of traces."""
def __init__(self, sample_rate: float = 0.1):
super().__init__()
self.sample_rate = sample_rate
self.sampled_calls = []
def on_lm_end(self, call_id: str, outputs: dict[str, Any] | None, exception: Exception | None = None):
"""Sample a subset of LM calls."""
if random.random() < self.sample_rate:
self.sampled_calls.append({
'call_id': call_id,
'outputs': outputs,
'exception': exception
})
# Use with high-volume apps
callback = SamplingCallback(sample_rate=0.1)
dspy.configure(lm=dspy.LM("openai/gpt-4o-mini"), callbacks=[callback])
Best Practices
- Use inspect_history() for debugging - Quick inspection during development
- MLflow for comprehensive tracing - Automatic instrumentation in production
- Sample high-volume traces - Reduce overhead with 1-10% sampling
- Privacy-aware logging - Redact PII before logging
- Async callbacks - Non-blocking callbacks for production
Limitations
- Callbacks are synchronous by default (can block LLM calls)
- MLflow tracing adds ~5-10ms overhead per call
- inspect_history() only stores recent calls (last 100 by default)
- Custom callbacks don't capture internal optimizer steps
- Cost estimation requires manual pricing table updates
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.