Use when adding new error messages to React, or seeing "unknown error code" warnings.
npx skills add agentmc15/polymarket-trader --skill "trading-strategies"
Install specific skill from multi-skill repository
# Description
Framework for developing, testing, and deploying trading strategies for prediction markets. Use when creating new strategies, implementing signals, or building backtesting logic.
# SKILL.md
name: trading-strategies
description: Framework for developing, testing, and deploying trading strategies for prediction markets. Use when creating new strategies, implementing signals, or building backtesting logic.
Trading Strategy Development Skill
Strategy Base Class
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Optional
from datetime import datetime
from enum import Enum
class SignalType(Enum):
BUY = "buy"
SELL = "sell"
HOLD = "hold"
@dataclass
class Signal:
type: SignalType
token_id: str
price: float
size: float
confidence: float # 0-1
timestamp: datetime
metadata: dict = None
@dataclass
class MarketState:
token_id: str
yes_price: float
no_price: float
volume_24h: float
open_interest: float
orderbook: dict
recent_trades: list
timestamp: datetime
class BaseStrategy(ABC):
"""Base class for all trading strategies."""
def __init__(self, config: dict):
self.config = config
self.positions = {}
self.signals_history = []
@abstractmethod
async def analyze(self, market: MarketState) -> Optional[Signal]:
"""Analyze market and generate signal."""
pass
@abstractmethod
def calculate_position_size(
self,
signal: Signal,
portfolio_value: float
) -> float:
"""Calculate appropriate position size."""
pass
def should_execute(self, signal: Signal) -> bool:
"""Determine if signal should be executed."""
return signal.confidence >= self.config.get("min_confidence", 0.6)
Strategy Types
1. Arbitrage Strategy
class ArbitrageStrategy(BaseStrategy):
"""Detect and exploit pricing inefficiencies."""
async def find_opportunities(
self,
markets: list[MarketState]
) -> list[Signal]:
opportunities = []
# Check YES + NO > 1 (overpriced)
for market in markets:
total = market.yes_price + market.no_price
if total > 1.02: # 2% threshold
opportunities.append(
self._create_arb_signal(market, "overpriced", total)
)
# Check related markets
opportunities.extend(
await self._find_related_arbs(markets)
)
return opportunities
async def analyze(self, market: MarketState) -> Optional[Signal]:
total = market.yes_price + market.no_price
# Overpriced market (YES + NO > 1)
if total > 1.0 + self.config.get("arb_threshold", 0.02):
profit_pct = (total - 1.0) * 100
return Signal(
type=SignalType.SELL,
token_id=market.token_id,
price=total,
size=self.config.get("default_size", 100),
confidence=min(profit_pct / 10, 1.0),
timestamp=datetime.utcnow(),
metadata={"arb_type": "overpriced", "profit_pct": profit_pct}
)
return None
2. Copy Trading Strategy
class CopyTradingStrategy(BaseStrategy):
"""Mirror trades of successful traders."""
def __init__(self, config: dict):
super().__init__(config)
self.tracked_traders = config.get("tracked_traders", [])
self.trade_delay = config.get("delay_seconds", 30)
self.size_multiplier = config.get("size_multiplier", 0.5)
async def process_trader_activity(
self,
trader_address: str,
trade: dict
) -> Optional[Signal]:
"""Generate signal based on tracked trader activity."""
if trader_address not in self.tracked_traders:
return None
trader_score = await self._get_trader_score(trader_address)
return Signal(
type=SignalType.BUY if trade["side"] == "BUY" else SignalType.SELL,
token_id=trade["token_id"],
price=trade["price"],
size=self._scale_size(trade["size"], trader_score),
confidence=trader_score,
timestamp=datetime.utcnow(),
metadata={
"source_trader": trader_address,
"original_size": trade["size"]
}
)
def _scale_size(self, original_size: float, score: float) -> float:
"""Scale position size based on trader confidence."""
return original_size * self.size_multiplier * score
3. Momentum Strategy
class MomentumStrategy(BaseStrategy):
"""Trade based on price momentum and volume."""
async def analyze(self, market: MarketState) -> Optional[Signal]:
# Calculate momentum indicators
price_change = self._calculate_price_change(market, hours=4)
volume_ratio = self._calculate_volume_ratio(market)
orderbook_imbalance = self._calculate_imbalance(market.orderbook)
score = (
price_change * 0.4 +
volume_ratio * 0.3 +
orderbook_imbalance * 0.3
)
if score > self.config.get("buy_threshold", 0.3):
return Signal(
type=SignalType.BUY,
token_id=market.token_id,
price=market.yes_price,
size=self.calculate_position_size(score, 10000),
confidence=min(abs(score), 1.0),
timestamp=datetime.utcnow(),
metadata={
"price_change": price_change,
"volume_ratio": volume_ratio,
"imbalance": orderbook_imbalance
}
)
elif score < self.config.get("sell_threshold", -0.3):
return Signal(
type=SignalType.SELL,
token_id=market.token_id,
price=market.yes_price,
size=self.calculate_position_size(score, 10000),
confidence=min(abs(score), 1.0),
timestamp=datetime.utcnow()
)
return None
def _calculate_imbalance(self, orderbook: dict) -> float:
"""Calculate bid/ask imbalance."""
total_bids = sum(b["size"] for b in orderbook.get("bids", [])[:5])
total_asks = sum(a["size"] for a in orderbook.get("asks", [])[:5])
if total_bids + total_asks == 0:
return 0
return (total_bids - total_asks) / (total_bids + total_asks)
4. Mean Reversion Strategy
class MeanReversionStrategy(BaseStrategy):
"""Trade reversals from price extremes."""
def __init__(self, config: dict):
super().__init__(config)
self.lookback_hours = config.get("lookback_hours", 24)
self.std_threshold = config.get("std_threshold", 2.0)
async def analyze(self, market: MarketState) -> Optional[Signal]:
historical_prices = await self._get_historical_prices(
market.token_id,
hours=self.lookback_hours
)
mean_price = sum(historical_prices) / len(historical_prices)
std_dev = self._calculate_std(historical_prices, mean_price)
current_price = market.yes_price
z_score = (current_price - mean_price) / std_dev if std_dev > 0 else 0
# Price significantly below mean - BUY
if z_score < -self.std_threshold:
return Signal(
type=SignalType.BUY,
token_id=market.token_id,
price=current_price,
size=self.config.get("default_size", 100),
confidence=min(abs(z_score) / 3, 1.0),
timestamp=datetime.utcnow(),
metadata={"z_score": z_score, "mean": mean_price}
)
# Price significantly above mean - SELL
elif z_score > self.std_threshold:
return Signal(
type=SignalType.SELL,
token_id=market.token_id,
price=current_price,
size=self.config.get("default_size", 100),
confidence=min(abs(z_score) / 3, 1.0),
timestamp=datetime.utcnow(),
metadata={"z_score": z_score, "mean": mean_price}
)
return None
Backtesting Framework
@dataclass
class BacktestResult:
strategy_name: str
start_date: datetime
end_date: datetime
initial_capital: float
final_value: float
total_return: float
sharpe_ratio: float
max_drawdown: float
win_rate: float
total_trades: int
trades: list[dict]
equity_curve: list[float]
class Backtester:
def __init__(
self,
strategy: BaseStrategy,
initial_capital: float = 10000,
fee_rate: float = 0.01
):
self.strategy = strategy
self.initial_capital = initial_capital
self.fee_rate = fee_rate
async def run(
self,
historical_data: list[MarketState],
start_date: datetime,
end_date: datetime
) -> BacktestResult:
"""Run backtest over historical data."""
portfolio_value = self.initial_capital
cash = self.initial_capital
positions = {}
equity_curve = [portfolio_value]
trades = []
for market_state in historical_data:
if market_state.timestamp < start_date:
continue
if market_state.timestamp > end_date:
break
signal = await self.strategy.analyze(market_state)
if signal and self.strategy.should_execute(signal):
trade_result = self._simulate_trade(
signal, cash, positions, market_state
)
if trade_result:
trades.append(trade_result)
cash = trade_result["remaining_cash"]
positions = trade_result["positions"]
# Update portfolio value
portfolio_value = cash + self._calculate_positions_value(
positions, market_state
)
equity_curve.append(portfolio_value)
return self._calculate_metrics(
trades, equity_curve, start_date, end_date
)
def _calculate_metrics(
self,
trades: list,
equity_curve: list,
start_date: datetime,
end_date: datetime
) -> BacktestResult:
"""Calculate performance metrics."""
returns = [
(equity_curve[i] - equity_curve[i-1]) / equity_curve[i-1]
for i in range(1, len(equity_curve))
if equity_curve[i-1] > 0
]
avg_return = sum(returns) / len(returns) if returns else 0
std_return = self._calculate_std(returns, avg_return) if returns else 0
sharpe = (avg_return * 252**0.5) / std_return if std_return > 0 else 0
# Max drawdown
peak = equity_curve[0]
max_dd = 0
for value in equity_curve:
peak = max(peak, value)
dd = (peak - value) / peak
max_dd = max(max_dd, dd)
winning_trades = [t for t in trades if t.get("pnl", 0) > 0]
return BacktestResult(
strategy_name=self.strategy.__class__.__name__,
start_date=start_date,
end_date=end_date,
initial_capital=self.initial_capital,
final_value=equity_curve[-1],
total_return=(equity_curve[-1] - self.initial_capital) / self.initial_capital,
sharpe_ratio=sharpe,
max_drawdown=max_dd,
win_rate=len(winning_trades) / len(trades) if trades else 0,
total_trades=len(trades),
trades=trades,
equity_curve=equity_curve
)
Risk Management
class RiskManager:
def __init__(self, config: dict):
self.max_position_pct = config.get("max_position_pct", 0.1)
self.max_drawdown_pct = config.get("max_drawdown_pct", 0.2)
self.daily_loss_limit = config.get("daily_loss_limit", 0.05)
self.max_correlation = config.get("max_correlation", 0.7)
def validate_signal(
self,
signal: Signal,
portfolio: dict
) -> tuple[bool, str]:
"""Validate signal against risk parameters."""
# Check position concentration
position_value = signal.price * signal.size
if position_value > portfolio["value"] * self.max_position_pct:
return False, f"Position too large: {position_value:.2f}"
# Check drawdown
current_drawdown = (
portfolio["peak_value"] - portfolio["value"]
) / portfolio["peak_value"]
if current_drawdown > self.max_drawdown_pct:
return False, f"Max drawdown exceeded: {current_drawdown:.2%}"
# Check daily loss limit
daily_pnl = portfolio.get("daily_pnl", 0)
if daily_pnl < -portfolio["value"] * self.daily_loss_limit:
return False, f"Daily loss limit exceeded: {daily_pnl:.2f}"
return True, "OK"
def calculate_kelly_size(
self,
win_prob: float,
win_amount: float,
loss_amount: float
) -> float:
"""Calculate Kelly criterion position size."""
if loss_amount == 0:
return 0
b = win_amount / loss_amount
p = win_prob
q = 1 - p
kelly = (b * p - q) / b
# Use half-Kelly for safety
return max(0, kelly * 0.5)
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.