arielperez82

orchestrating-agents

0
0
# Install this skill:
npx skills add arielperez82/agents-and-skills --skill "orchestrating-agents"

Install specific skill from multi-skill repository

# Description

Orchestrates parallel API instances, delegated sub-tasks, and multi-agent workflows with streaming and tool-enabled delegation patterns. Use for parallel analysis, multi-perspective reviews, or complex task decomposition.

# SKILL.md


name: orchestrating-agents
description: Orchestrates parallel API instances, delegated sub-tasks, and multi-agent workflows with streaming and tool-enabled delegation patterns. Use for parallel analysis, multi-perspective reviews, or complex task decomposition.
metadata:
version: 0.1.2


Orchestrating Agents

This skill enables programmatic API invocations for advanced workflows including parallel processing, task delegation, and multi-agent analysis using the Anthropic API.

When to Use This Skill

Primary use cases:
- Parallel sub-tasks: Break complex analysis into simultaneous independent streams
- Multi-perspective analysis: Get 3-5 different expert viewpoints concurrently
- Delegation: Offload specific subtasks to specialized API instances
- Recursive workflows: Orchestrator coordinating multiple API instances
- High-volume processing: Batch process multiple items concurrently

Trigger patterns:
- "Parallel analysis", "multi-perspective review", "concurrent processing"
- "Delegate subtasks", "coordinate multiple agents"
- "Run analyses from different perspectives"
- "Get expert opinions from multiple angles"

Quick Start

Single Invocation

import sys
sys.path.append('/home/user/claude-skills/orchestrating-agents/scripts')
from claude_client import invoke_claude

response = invoke_claude(
    prompt="Analyze this code for security vulnerabilities: ...",
    model="claude-sonnet-4-5-20250929"
)
print(response)

Parallel Multi-Perspective Analysis

from claude_client import invoke_parallel

prompts = [
    {
        "prompt": "Analyze from security perspective: ...",
        "system": "You are a security expert"
    },
    {
        "prompt": "Analyze from performance perspective: ...",
        "system": "You are a performance optimization expert"
    },
    {
        "prompt": "Analyze from maintainability perspective: ...",
        "system": "You are a software architecture expert"
    }
]

results = invoke_parallel(prompts, model="claude-sonnet-4-5-20250929")

for i, result in enumerate(results):
    print(f"\n=== Perspective {i+1} ===")
    print(result)

For parallel operations with shared base context, use caching to reduce costs by up to 90%:

from claude_client import invoke_parallel

# Large context shared across all sub-agents (e.g., codebase, documentation)
base_context = """
<codebase>
...large codebase or documentation (1000+ tokens)...
</codebase>
"""

prompts = [
    {"prompt": "Find security vulnerabilities in the authentication module"},
    {"prompt": "Identify performance bottlenecks in the API layer"},
    {"prompt": "Suggest refactoring opportunities in the database layer"}
]

# First sub-agent creates cache, subsequent ones reuse it
results = invoke_parallel(
    prompts,
    shared_system=base_context,
    cache_shared_system=True  # 90% cost reduction for cached content
)

Multi-Turn Conversation with Auto-Caching

For sub-agents that need multiple rounds of conversation:

from claude_client import ConversationThread

# Create a conversation thread (auto-caches history)
agent = ConversationThread(
    system="You are a code refactoring expert with access to the codebase",
    cache_system=True
)

# Turn 1: Initial analysis
response1 = agent.send("Analyze the UserAuth class for issues")
print(response1)

# Turn 2: Follow-up (reuses cached system + turn 1)
response2 = agent.send("How would you refactor the login method?")
print(response2)

# Turn 3: Implementation (reuses all previous context)
response3 = agent.send("Show me the refactored code")
print(response3)

Streaming Responses

For real-time feedback from sub-agents:

from claude_client import invoke_claude_streaming

def show_progress(chunk):
    print(chunk, end='', flush=True)

response = invoke_claude_streaming(
    "Write a comprehensive security analysis...",
    callback=show_progress
)

Parallel Streaming

Monitor multiple sub-agents simultaneously:

from claude_client import invoke_parallel_streaming

def agent1_callback(chunk):
    print(f"[Security] {chunk}", end='', flush=True)

def agent2_callback(chunk):
    print(f"[Performance] {chunk}", end='', flush=True)

results = invoke_parallel_streaming(
    [
        {"prompt": "Security review: ..."},
        {"prompt": "Performance review: ..."}
    ],
    callbacks=[agent1_callback, agent2_callback]
)

Interruptible Operations

Cancel long-running parallel operations:

from claude_client import invoke_parallel_interruptible, InterruptToken
import threading
import time

token = InterruptToken()

# Run in background
def run_analysis():
    results = invoke_parallel_interruptible(
        prompts=[...],
        interrupt_token=token
    )
    return results

thread = threading.Thread(target=run_analysis)
thread.start()

# Interrupt after 5 seconds
time.sleep(5)
token.interrupt()

Core Functions

invoke_claude()

Single synchronous invocation with full control:

invoke_claude(
    prompt: str | list[dict],
    model: str = "claude-sonnet-4-5-20250929",
    system: str | list[dict] | None = None,
    max_tokens: int = 4096,
    temperature: float = 1.0,
    streaming: bool = False,
    cache_system: bool = False,
    cache_prompt: bool = False,
    messages: list[dict] | None = None,
    **kwargs
) -> str

Parameters:
- prompt: The user message (string or list of content blocks)
- model: Claude model to use (default: claude-sonnet-4-5-20250929)
- system: Optional system prompt (string or list of content blocks)
- max_tokens: Maximum tokens in response (default: 4096)
- temperature: Randomness 0-1 (default: 1.0)
- streaming: Enable streaming response (default: False)
- cache_system: Add cache_control to system prompt (requires 1024+ tokens, default: False)
- cache_prompt: Add cache_control to user prompt (requires 1024+ tokens, default: False)
- messages: Pre-built messages list for multi-turn (overrides prompt)
- **kwargs: Additional API parameters (top_p, top_k, etc.)

Returns: Response text as string

Note: Caching requires minimum 1,024 tokens per cache breakpoint. Cache lifetime is 5 minutes (refreshed on use).

invoke_parallel()

Concurrent invocations using lightweight workflow pattern:

invoke_parallel(
    prompts: list[dict],
    model: str = "claude-sonnet-4-5-20250929",
    max_tokens: int = 4096,
    max_workers: int = 5,
    shared_system: str | list[dict] | None = None,
    cache_shared_system: bool = False
) -> list[str]

Parameters:
- prompts: List of dicts with 'prompt' (required) and optional 'system', 'temperature', 'cache_system', 'cache_prompt', etc.
- model: Claude model for all invocations
- max_tokens: Max tokens per response
- max_workers: Max concurrent API calls (default: 5, max: 10)
- shared_system: System context shared across ALL invocations (for cache efficiency)
- cache_shared_system: Add cache_control to shared_system (default: False)

Returns: List of response strings in same order as prompts

Note: For optimal cost savings, put large common context (1024+ tokens) in shared_system with cache_shared_system=True. First invocation creates cache, subsequent ones reuse it (90% cost reduction).

invoke_claude_streaming()

Stream responses in real-time with optional callbacks:

invoke_claude_streaming(
    prompt: str | list[dict],
    callback: callable = None,
    model: str = "claude-sonnet-4-5-20250929",
    system: str | list[dict] | None = None,
    max_tokens: int = 4096,
    temperature: float = 1.0,
    cache_system: bool = False,
    cache_prompt: bool = False,
    **kwargs
) -> str

Parameters:
- callback: Optional function called with each text chunk (str) as it arrives
- (other parameters same as invoke_claude)

Returns: Complete accumulated response text

invoke_parallel_streaming()

Parallel invocations with per-agent streaming callbacks:

invoke_parallel_streaming(
    prompts: list[dict],
    callbacks: list[callable] = None,
    model: str = "claude-sonnet-4-5-20250929",
    max_tokens: int = 4096,
    max_workers: int = 5,
    shared_system: str | list[dict] | None = None,
    cache_shared_system: bool = False
) -> list[str]

Parameters:
- callbacks: Optional list of callback functions, one per prompt
- (other parameters same as invoke_parallel)

invoke_parallel_interruptible()

Parallel invocations with cancellation support:

invoke_parallel_interruptible(
    prompts: list[dict],
    interrupt_token: InterruptToken = None,
    # ... same other parameters as invoke_parallel
) -> list[str]

Parameters:
- interrupt_token: Optional InterruptToken to signal cancellation
- (other parameters same as invoke_parallel)

Returns: List of response strings (None for interrupted tasks)

ConversationThread

Manages multi-turn conversations with automatic caching:

thread = ConversationThread(
    system: str | list[dict] | None = None,
    model: str = "claude-sonnet-4-5-20250929",
    max_tokens: int = 4096,
    temperature: float = 1.0,
    cache_system: bool = True
)

response = thread.send(
    user_message: str | list[dict],
    cache_history: bool = True
) -> str

Methods:
- send(message, cache_history=True): Send message and get response
- get_messages(): Get conversation history
- clear(): Clear conversation history
- __len__(): Get number of turns

Note: Automatically caches conversation history to minimize token costs across turns.

Example Workflows

See references/workflows.md for detailed examples including:
- Multi-expert code review
- Parallel document analysis
- Recursive task delegation
- Advanced Agent SDK delegation patterns
- Prompt caching workflows

Setup

Prerequisites:

  1. Install anthropic library:
    bash uv pip install anthropic

  2. Configure API key via project knowledge file:

Option 1 (recommended): Individual file
- Create document: ANTHROPIC_API_KEY.txt
- Content: Your API key (e.g., sk-ant-api03-...)

Option 2: Combined file
- Create document: API_CREDENTIALS.json
- Content:
json { "anthropic_api_key": "sk-ant-api03-..." }

Get your API key: https://console.anthropic.com/settings/keys

Installation check:

python3 -c "import anthropic; print(f'✓ anthropic {anthropic.__version__}')"

Error Handling

The module provides comprehensive error handling:

from claude_client import invoke_claude, ClaudeInvocationError

try:
    response = invoke_claude("Your prompt here")
except ClaudeInvocationError as e:
    print(f"API Error: {e}")
    print(f"Status: {e.status_code}")
    print(f"Details: {e.details}")
except ValueError as e:
    print(f"Configuration Error: {e}")

Common errors:
- API key missing: Add ANTHROPIC_API_KEY.txt to project knowledge (see Setup above)
- Rate limits: Reduce max_workers or add delays
- Token limits: Reduce prompt size or max_tokens
- Network errors: Automatic retry with exponential backoff

Prompt Caching

For detailed caching workflows and best practices, see references/workflows.md.

Performance Considerations

Token efficiency:
- Parallel calls use more tokens but save wall-clock time
- Use prompt caching for shared context (90% cost reduction)
- Use concise system prompts to reduce overhead
- Consider token budgets when setting max_tokens

Rate limits:
- Anthropic API has per-minute rate limits
- Default max_workers=5 is safe for most tiers
- Adjust based on your API tier and rate limits

Cost management:
- Each invocation consumes API credits
- Monitor usage in Anthropic Console
- Use smaller models (haiku) for simple tasks
- Use prompt caching for repeated context (90% savings)
- Cache lifetime: 5 minutes, refreshed on each use

Best Practices

  1. Use parallel invocations for independent tasks only
  2. Don't parallelize sequential dependencies
  3. Each parallel task should be self-contained

  4. Set appropriate system prompts

  5. Define clear roles/expertise for each instance
  6. Keeps responses focused and relevant

  7. Handle errors gracefully

  8. Always wrap invocations in try-except
  9. Provide fallback behavior for failures

  10. Test with small batches first

  11. Verify prompts work before scaling
  12. Check token usage and costs

  13. Consider alternatives

  14. Not all tasks benefit from multiple instances
  15. Sometimes sequential with context is better

Token Efficiency

This skill uses ~800 tokens when loaded but enables powerful multi-agent patterns that can dramatically improve complex analysis quality and speed.

See Also

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.