Use when adding new error messages to React, or seeing "unknown error code" warnings.
npx skills add digitalocean-labs/do-app-platform-skills --skill "app-platform-sandbox"
Install specific skill from multi-skill repository
# Description
Create and manage isolated container sandboxes for AI agent code execution. Use when you need ephemeral environments to run untrusted code, execute agent workflows, or test in isolation. NOT for debugging existing apps (use troubleshooting skill).
# SKILL.md
name: app-platform-sandbox
version: 1.0.0
min_doctl_version: "1.82.0"
description: Create and manage isolated container sandboxes for AI agent code execution. Use when you need ephemeral environments to run untrusted code, execute agent workflows, or test in isolation. NOT for debugging existing apps (use troubleshooting skill).
related_skills: [troubleshooting]
deprecated: false
Sandbox Skill
Isolated execution environments for AI agents and testing workflows.
Philosophy
Lambda/Functions: Fast cold start, 15-min limit, stateless, per-ms billing
App Platform Sandbox: 30s cold start (or instant with pool), unlimited duration, stateful, per-hour billing
Sweet spot: Long-running, stateful, iterative workflows where agents need to
install packages, run code, check results, modify, repeat.
Quick Decision
┌─────────────────────────────────────────────────────────────┐
│ Need isolated execution environment? │
└─────────────────────────────────────────────────────────────┘
│
Is this for debugging an EXISTING app?
│
┌───────────────┴───────────────┐
│ │
YES NO
│ │
▼ ▼
┌─────────────────┐ ┌─────────────────┐
│ troubleshooting │ │ Need real-time │
│ skill │ │ streaming or │
│ │ │ port exposure? │
│ Sandbox.get_ │ │ │
│ from_id() │ └────────┬────────┘
└─────────────────┘ │
┌───────────────┴───────────────┐
│ │
YES NO
│ │
▼ ▼
┌─────────────────┐ ┌─────────────────┐
│ SERVICE MODE │ │ Is low latency │
│ exec_stream() │ │ critical? │
│ expose_port() │ │ │
└─────────────────┘ └────────┬────────┘
│
┌───────────────┴───────────────┐
│ │
YES NO
│ │
▼ ▼
┌─────────────────┐ ┌─────────────────┐
│ HOT POOL │ │ COLD SANDBOX │
│ SandboxManager │ │ Sandbox.create()│
│ ~50ms acquire │ │ ~30s startup │
└─────────────────┘ └─────────────────┘
Prerequisites
# Verify doctl is installed and authenticated
doctl auth whoami
# Install the SDK (choose one)
uv pip install do-app-sandbox
# OR
pip install do-app-sandbox
# For Spaces support (large file transfers)
pip install "do-app-sandbox[spaces]"
Requirements:
- Python 3.10.12+
- doctl CLI installed and authenticated
- DigitalOcean account with App Platform access
Quick Start: Cold Sandbox
Single sandbox creation with ~30s startup time:
from do_app_sandbox import Sandbox
# Create sandbox with Python image
sandbox = Sandbox.create(
image="python", # or "node"
name="my-sandbox",
region="nyc",
instance_size="apps-s-1vcpu-1gb"
)
# Execute code
result = sandbox.exec("python3 -c 'import sys; print(sys.version)'")
print(result.stdout)
# File operations
sandbox.filesystem.write_file("/tmp/script.py", "print('hello')")
result = sandbox.exec("python3 /tmp/script.py")
# Clean up
sandbox.delete()
Full guide: See cold-sandbox.md
Quick Start: Hot Pool
Pre-warmed sandboxes for instant acquisition:
import asyncio
from do_app_sandbox import SandboxManager, PoolConfig
async def main():
# 1. Configure pool
manager = SandboxManager(
pools={"python": PoolConfig(target_ready=3)},
)
# 2. Start and warm up (blocks until pool is ready)
await manager.start()
await manager.warm_up(timeout=180)
# 3. Acquire instantly (~500ms from pool vs 30s cold start)
sandbox = await manager.acquire(image="python")
result = sandbox.exec("python3 -c 'print(2+2)'")
print(result.stdout)
# 4. Delete when done - YOUR responsibility!
sandbox.delete()
# 5. Shutdown (cleans up pool, not acquired sandboxes)
await manager.shutdown()
asyncio.run(main())
Ownership model: Once you acquire() a sandbox, you own it. Always call sandbox.delete() when done. The shutdown() only cleans up sandboxes still in the pool.
Full guide: See hot-pool.md
Quick Reference: When to Use Sandbox
| Scenario | Recommendation |
|---|---|
| AI code interpreter | Hot Pool (instant response) |
| Multi-step agent workflow | Single sandbox (state persists within one sandbox) |
| One-off script test | Cold Sandbox (simple) |
| CI integration testing | Cold Sandbox (per-job) |
| Short tasks (< 30s) | Consider Lambda instead |
| High concurrency (1000+) | Consider Lambda instead |
Quick Reference: Available Images
| Image | Registry | Use Case |
|---|---|---|
python |
ghcr.io/bikramkgupta/sandbox-python |
Python 3.13, uv, pip |
node |
ghcr.io/bikramkgupta/sandbox-node |
Node.js 24, nvm |
Working directory: /home/sandbox/app (with /app symlink). Ports: 8080 (user apps), 9090 (health checks).
Custom images supported — any Docker image with HTTP server capability.
Quick Reference: SDK Methods
| Method | Purpose |
|---|---|
Sandbox.create(image, mode=...) |
Create sandbox (WORKER or SERVICE mode) |
Sandbox.get_from_id() |
Connect to existing app |
sandbox.exec(cmd) |
Run shell command |
sandbox.exec_stream(cmd) |
Streaming output (SERVICE mode) |
sandbox.expose_port(port) |
Get public URL for port (SERVICE mode) |
sandbox.hibernate() |
Snapshot + delete for cost savings |
Sandbox.wake(hibernated) |
Restore hibernated sandbox |
sandbox.filesystem.read_file() |
Read file contents |
sandbox.filesystem.write_file() |
Write file |
sandbox.delete() |
Delete sandbox (always call when done) |
SandboxManager(pools={...}) |
Configure hot pool |
manager.start() |
Start background pool management |
manager.warm_up(timeout) |
Block until pool reaches target (async) |
manager.acquire(image=...) |
Get sandbox from pool (async) |
manager.acquire_with_snapshot() |
Get sandbox with pre-configured state |
manager.shutdown() |
Tear down pool (cleans up pool only) |
Reference Files
- cold-sandbox.md — Single sandbox lifecycle, file ops, cleanup
- hot-pool.md — Pool management, sizing, cost optimization
- service-mode.md — Streaming, port exposure, AI agent patterns
- use-cases.md — AI agent patterns, testing patterns
- positioning.md — Lambda vs Sandbox decision guide
Cost Considerations
Sandbox billing: ~$0.01-0.03/hour per container (apps-s-1vcpu-1gb)
Hot Pool trade-off:
- Pool of 5 sandboxes running 8 hours = ~$0.80-2.40/day
- Eliminates 30s cold start per request
- Worth it for interactive AI agents, not for batch jobs
Integration with Other Skills
| Direction | Skill | When |
|---|---|---|
| → | troubleshooting | Debug an existing sandbox (use Sandbox.get_from_id()) |
| → | designer | Include sandbox-compatible worker in app spec |
| ← | deployment | Sandboxes are standalone, not part of main app deployment |
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.