Use when you have a written implementation plan to execute in a separate session with review checkpoints
npx skills add inference-sh/skills --skill "python-executor"
Install specific skill from multi-skill repository
# Description
|
# SKILL.md
name: python-executor
description: |
Execute Python code in a safe sandboxed environment via inference.sh.
Pre-installed: NumPy, Pandas, Matplotlib, requests, BeautifulSoup, Selenium,
Playwright, MoviePy, Pillow, OpenCV, trimesh, and 100+ more libraries.
Use for: data processing, web scraping, image manipulation, video creation,
3D model processing, PDF generation, API calls, automation scripts.
Triggers: python, execute code, run script, web scraping, data analysis,
image processing, video editing, 3D models, automation, pandas, matplotlib
allowed-tools: Bash(infsh *)
Python Code Executor
Execute Python code in a safe, sandboxed environment with 100+ pre-installed libraries.
Quick Start
curl -fsSL https://cli.inference.sh | sh && infsh login
# Run Python code
infsh app run infsh/python-executor --input '{
"code": "import pandas as pd\nprint(pd.__version__)"
}'
App Details
| Property | Value |
|---|---|
| App ID | infsh/python-executor |
| Environment | Python 3.10, CPU-only |
| RAM | 8GB (default) / 16GB (high_memory) |
| Timeout | 1-300 seconds (default: 30) |
Input Schema
{
"code": "print('Hello World!')",
"timeout": 30,
"capture_output": true,
"working_dir": null
}
Pre-installed Libraries
Web Scraping & HTTP
requests,httpx,aiohttp- HTTP clientsbeautifulsoup4,lxml- HTML/XML parsingselenium,playwright- Browser automationscrapy- Web scraping framework
Data Processing
numpy,pandas,scipy- Numerical computingmatplotlib,seaborn,plotly- Visualization
Image Processing
pillow,opencv-python-headless- Image manipulationscikit-image,imageio- Image algorithms
Video & Audio
moviepy- Video editingav(PyAV),ffmpeg-python- Video processingpydub- Audio manipulation
3D Processing
trimesh,open3d- 3D mesh processingnumpy-stl,meshio,pyvista- 3D file formats
Documents & Graphics
svgwrite,cairosvg- SVG creationreportlab,pypdf2- PDF generation
Examples
Web Scraping
infsh app run infsh/python-executor --input '{
"code": "import requests\nfrom bs4 import BeautifulSoup\n\nresponse = requests.get(\"https://example.com\")\nsoup = BeautifulSoup(response.content, \"html.parser\")\nprint(soup.find(\"title\").text)"
}'
Data Analysis with Visualization
infsh app run infsh/python-executor --input '{
"code": "import pandas as pd\nimport matplotlib.pyplot as plt\n\ndata = {\"name\": [\"Alice\", \"Bob\"], \"sales\": [100, 150]}\ndf = pd.DataFrame(data)\n\nplt.bar(df[\"name\"], df[\"sales\"])\nplt.savefig(\"outputs/chart.png\")\nprint(\"Chart saved!\")"
}'
Image Processing
infsh app run infsh/python-executor --input '{
"code": "from PIL import Image\nimport numpy as np\n\n# Create gradient image\narr = np.linspace(0, 255, 256*256, dtype=np.uint8).reshape(256, 256)\nimg = Image.fromarray(arr, mode=\"L\")\nimg.save(\"outputs/gradient.png\")\nprint(\"Image created!\")"
}'
Video Creation
infsh app run infsh/python-executor --input '{
"code": "from moviepy.editor import ColorClip, TextClip, CompositeVideoClip\n\nclip = ColorClip(size=(640, 480), color=(0, 100, 200), duration=3)\ntxt = TextClip(\"Hello!\", fontsize=70, color=\"white\").set_position(\"center\").set_duration(3)\nvideo = CompositeVideoClip([clip, txt])\nvideo.write_videofile(\"outputs/hello.mp4\", fps=24)\nprint(\"Video created!\")",
"timeout": 120
}'
3D Model Processing
infsh app run infsh/python-executor --input '{
"code": "import trimesh\n\nsphere = trimesh.creation.icosphere(subdivisions=3, radius=1.0)\nsphere.export(\"outputs/sphere.stl\")\nprint(f\"Created sphere with {len(sphere.vertices)} vertices\")"
}'
API Calls
infsh app run infsh/python-executor --input '{
"code": "import requests\nimport json\n\nresponse = requests.get(\"https://api.github.com/users/octocat\")\ndata = response.json()\nprint(json.dumps(data, indent=2))"
}'
File Output
Files saved to outputs/ are automatically returned:
# These files will be in the response
plt.savefig('outputs/chart.png')
df.to_csv('outputs/data.csv')
video.write_videofile('outputs/video.mp4')
mesh.export('outputs/model.stl')
Variants
# Default (8GB RAM)
infsh app run infsh/python-executor --input input.json
# High memory (16GB RAM) for large datasets
infsh app run infsh/python-executor@high_memory --input input.json
Use Cases
- Web scraping - Extract data from websites
- Data analysis - Process and visualize datasets
- Image manipulation - Resize, crop, composite images
- Video creation - Generate videos with text overlays
- 3D processing - Load, transform, export 3D models
- API integration - Call external APIs
- PDF generation - Create reports and documents
- Automation - Run any Python script
Important Notes
- CPU-only - No GPU/ML libraries (use dedicated AI apps for that)
- Safe execution - Runs in isolated subprocess
- Non-interactive - Use
plt.savefig()notplt.show() - File detection - Output files are auto-detected and returned
Related Skills
# AI image generation (for ML-based images)
npx skills add inference-sh/skills@ai-image-generation
# AI video generation (for ML-based videos)
npx skills add inference-sh/skills@ai-video-generation
# LLM models (for text generation)
npx skills add inference-sh/skills@llm-models
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.