itechmeat

perplexity

1
0
# Install this skill:
npx skills add itechmeat/llm-code --skill "perplexity"

Install specific skill from multi-skill repository

# Description

Integrate Perplexity API for web-grounded AI responses and search. Covers Sonar models, Search API, SDK usage (Python/TypeScript), streaming, structured outputs, filters, media attachments, Pro Search, and prompting. Keywords: Perplexity, Sonar, sonar-pro, sonar-reasoning-pro, sonar-deep-research, web search API, grounded LLM, chat completions, perplexityai SDK, image attachments, PDF analysis.

# SKILL.md


name: perplexity
description: "Integrate Perplexity API for web-grounded AI responses and search. Covers Sonar models, Search API, SDK usage (Python/TypeScript), streaming, structured outputs, filters, media attachments, Pro Search, and prompting. Keywords: Perplexity, Sonar, sonar-pro, sonar-reasoning-pro, sonar-deep-research, web search API, grounded LLM, chat completions, perplexityai SDK, image attachments, PDF analysis."
version: "0.26.0"
release_date: "2026-01-24"


Perplexity API

Build AI applications with real-time web search and grounded responses.

Quick Navigation

  • Models & pricing: references/models.md
  • Search API patterns: references/search-api.md
  • Chat completions guide: references/chat-completions.md
  • Structured outputs: references/structured-outputs.md
  • Filters (domain/language/date/location): references/filters.md
  • Media (images/videos/attachments): references/media.md
  • Pro Search: references/pro-search.md
  • Prompting best practices: references/prompting.md

When to Use

  • Need AI responses grounded in current web data
  • Building search-powered applications
  • Research tools requiring citations
  • Real-time Q&A with source verification
  • Document/image analysis with web context

Installation

# Python
pip install perplexityai

# TypeScript/JavaScript
npm install @perplexityai/perplexity

Authentication

# macOS/Linux
export PERPLEXITY_API_KEY="your_api_key_here"

# Windows
setx PERPLEXITY_API_KEY "your_api_key_here"

SDK auto-reads PERPLEXITY_API_KEY environment variable.

Quick Start — Chat Completion

from perplexity import Perplexity

client = Perplexity()

completion = client.chat.completions.create(
    model="sonar-pro",
    messages=[{"role": "user", "content": "What is the latest news on AI?"}]
)

print(completion.choices[0].message.content)

Quick Start — Search API

from perplexity import Perplexity

client = Perplexity()

search = client.search.create(
    query="artificial intelligence trends 2024",
    max_results=5
)

for result in search.results:
    print(f"{result.title}: {result.url}")

Model Selection Guide

Model Use Case Cost
sonar Quick facts, simple Q&A Lowest
sonar-pro Complex queries, research Medium
sonar-reasoning-pro Multi-step reasoning, analysis Medium
sonar-deep-research Exhaustive research, reports Highest

Key Patterns

Streaming Responses

stream = client.chat.completions.create(
    messages=[{"role": "user", "content": "Explain quantum computing"}],
    model="sonar",
    stream=True
)

for chunk in stream:
    if chunk.choices[0].delta.content:
        print(chunk.choices[0].delta.content, end="")

Multi-Turn Conversation

messages = [
    {"role": "system", "content": "You are a research assistant."},
    {"role": "user", "content": "What causes climate change?"},
    {"role": "assistant", "content": "Climate change is caused by..."},
    {"role": "user", "content": "What are the solutions?"}
]

completion = client.chat.completions.create(messages=messages, model="sonar")

Web Search Options

completion = client.chat.completions.create(
    messages=[{"role": "user", "content": "Latest renewable energy news"}],
    model="sonar",
    web_search_options={
        "search_recency_filter": "week",
        "search_domain_filter": ["energy.gov", "iea.org"]
    }
)

Pro Search (Multi-Step Research)

# REQUIRES stream=True
completion = client.chat.completions.create(
    model="sonar-pro",
    messages=[{"role": "user", "content": "Research solar panel ROI"}],
    search_type="pro",
    stream=True
)

for chunk in completion:
    print(chunk.choices[0].delta.content or "", end="")

Image Attachment

completion = client.chat.completions.create(
    model="sonar-pro",
    messages=[{
        "role": "user",
        "content": [
            {"type": "text", "text": "Describe this image"},
            {"type": "image_url", "image_url": {"url": "https://example.com/image.jpg"}}
        ]
    }]
)

File Attachment (PDF Analysis)

completion = client.chat.completions.create(
    model="sonar-pro",
    messages=[{
        "role": "user",
        "content": [
            {"type": "text", "text": "Summarize this document"},
            {"type": "file_url", "file_url": {"url": "https://example.com/report.pdf"}}
        ]
    }]
)

Return Images in Response

completion = client.chat.completions.create(
    model="sonar",
    messages=[{"role": "user", "content": "Mount Everest photos"}],
    return_images=True,
    image_format_filter=["jpg", "png"]
)

Domain Filtering (Search API)

# Allowlist: include only these domains
search = client.search.create(
    query="climate research",
    search_domain_filter=["science.org", "nature.com"]
)

# Denylist: exclude these domains
search = client.search.create(
    query="tech news",
    search_domain_filter=["-reddit.com", "-pinterest.com"]
)
search = client.search.create(
    query=[
        "AI trends 2024",
        "machine learning healthcare",
        "neural networks applications"
    ],
    max_results=5
)

for i, query_results in enumerate(search.results):
    print(f"Query {i+1} results:")
    for result in query_results:
        print(f"  {result.title}")

Structured Outputs (JSON Schema)

from pydantic import BaseModel

class ContactInfo(BaseModel):
    email: str
    phone: str

completion = client.chat.completions.create(
    model="sonar-pro",
    messages=[{"role": "user", "content": "Find contact for Tesla IR"}],
    response_format={
        "type": "json_schema",
        "json_schema": {"schema": ContactInfo.model_json_schema()}
    }
)

contact = ContactInfo.model_validate_json(completion.choices[0].message.content)

Async Operations

import asyncio
from perplexity import AsyncPerplexity

async def main():
    async with AsyncPerplexity() as client:
        tasks = [
            client.search.create(query="AI news"),
            client.search.create(query="tech trends")
        ]
        results = await asyncio.gather(*tasks)

asyncio.run(main())

Rate Limit Handling

import time
from perplexity import RateLimitError

def search_with_retry(client, query, max_retries=3):
    for attempt in range(max_retries):
        try:
            return client.search.create(query=query)
        except RateLimitError:
            if attempt < max_retries - 1:
                time.sleep(2 ** attempt)
            else:
                raise

Response Parameters

Parameter Default Description
temperature 0.7 Creativity (0-2)
max_tokens varies Response length limit
top_p 0.9 Nucleus sampling
presence_penalty 0 Reduce repetition (-2 to 2)
frequency_penalty 0 Reduce word frequency (-2 to 2)

Search API Parameters

Parameter Description
max_results 1-20 results per query
max_tokens_per_page Content extraction depth (default 2048)
country ISO country code for regional results
search_domain_filter Domain allowlist/denylist (max 20)
search_language_filter ISO 639-1 language codes (max 10)

Pricing Quick Reference

Search API: $5/1K requests (no token costs)

Sonar Models (per 1M tokens):
| Model | Input | Output |
|-------|-------|--------|
| sonar | $1 | $1 |
| sonar-pro | $3 | $15 |
| sonar-reasoning-pro | $2 | $8 |

Request fees (per 1K requests): $5-$14 depending on search context size.

Critical Prohibitions

  • Do NOT request links/URLs in prompts (use citations field instead — model will hallucinate URLs)
  • Do NOT use recursive JSON schemas (not supported)
  • Do NOT use dict[str, Any] in Pydantic models for structured outputs
  • Do NOT mix allowlist and denylist in search_domain_filter
  • Do NOT exceed 5 queries in multi-query search
  • Do NOT expect first request with new JSON schema to be fast (10-30s warmup)
  • Do NOT use Pro Search without stream=True (will fail)
  • Do NOT send images to sonar-deep-research (not supported)
  • Do NOT include data: prefix for file attachments base64 (only for images)
  • Do NOT try to control search via prompts (use API parameters instead)

Error Handling

import perplexity

try:
    completion = client.chat.completions.create(...)
except perplexity.BadRequestError as e:
    print(f"Invalid parameters: {e}")
except perplexity.RateLimitError:
    print("Rate limited, retry later")
except perplexity.APIStatusError as e:
    print(f"API error: {e.status_code}")

OpenAI SDK Compatibility

Perplexity supports OpenAI Chat Completions format. Use OpenAI client by pointing to Perplexity endpoint.

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.