jezweb

cloudflare-workers-ai

224
26
# Install this skill:
npx skills add jezweb/claude-skills --skill "cloudflare-workers-ai"

Install specific skill from multi-skill repository

# Description

|

# SKILL.md


name: cloudflare-workers-ai
description: |
Run LLMs and AI models on Cloudflare's GPU network with Workers AI. Includes Llama 4, Gemma 3, Mistral 3.1, Flux images, BGE embeddings, streaming, and AI Gateway. Handles 2025 breaking changes. Prevents 7 documented errors.

Use when: implementing LLM inference, images, RAG, or troubleshooting AI_ERROR, rate limits, max_tokens, BGE pooling, context window, neuron billing, Miniflare AI binding, NSFW filter, num_steps.
user-invocable: true


Cloudflare Workers AI

Status: Production Ready ✅
Last Updated: 2026-01-21
Dependencies: cloudflare-worker-base (for Worker setup)
Latest Versions: [email protected], @cloudflare/[email protected], [email protected]

Recent Updates (2025):
- April 2025 - Performance: Llama 3.3 70B 2-4x faster (speculative decoding, prefix caching), BGE embeddings 2x faster
- April 2025 - Breaking Changes: max_tokens now correctly defaults to 256 (was not respected), BGE pooling parameter (cls NOT backwards compatible with mean)
- 2025 - New Models (14): Mistral 3.1 24B (vision+tools), Gemma 3 12B (128K context), EmbeddingGemma 300M, Llama 4 Scout, GPT-OSS 120B/20B, Qwen models (QwQ 32B, Coder 32B), Leonardo image gen, Deepgram Aura 2, Whisper v3 Turbo, IBM Granite, Nova 3
- 2025 - Platform: Context windows API change (tokens not chars), unit-based pricing with per-model granularity, workers-ai-provider v3.0.2 (AI SDK v5), LoRA rank up to 32 (was 8), 100 adapters per account
- October 2025: Model deprecations (use Llama 4, GPT-OSS instead)


Quick Start (5 Minutes)

// 1. Add AI binding to wrangler.jsonc
{ "ai": { "binding": "AI" } }

// 2. Run model with streaming (recommended)
export default {
  async fetch(request: Request, env: Env): Promise<Response> {
    const stream = await env.AI.run('@cf/meta/llama-3.1-8b-instruct', {
      messages: [{ role: 'user', content: 'Tell me a story' }],
      stream: true, // Always stream for text generation!
    });

    return new Response(stream, {
      headers: { 'content-type': 'text/event-stream' },
    });
  },
};

Why streaming? Prevents buffering in memory, faster time-to-first-token, avoids Worker timeout issues.


Known Issues Prevention

This skill prevents 7 documented issues:

Issue #1: Context Window Validation Changed to Tokens (February 2025)

Error: "Exceeded character limit" despite model supporting larger context
Source: Cloudflare Changelog
Why It Happens: Before February 2025, Workers AI validated prompts using a hard 6144 character limit, even for models with larger token-based context windows (e.g., Mistral with 32K tokens). After the update, validation switched to token-based counting.
Prevention: Calculate tokens (not characters) when checking context window limits.

import { encode } from 'gpt-tokenizer'; // or model-specific tokenizer

const tokens = encode(prompt);
const contextWindow = 32768; // Model's max tokens (check docs)
const maxResponseTokens = 2048;

if (tokens.length + maxResponseTokens > contextWindow) {
  throw new Error(`Prompt exceeds context window: ${tokens.length} tokens`);
}

const response = await env.AI.run('@cf/mistral/mistral-7b-instruct-v0.2', {
  messages: [{ role: 'user', content: prompt }],
  max_tokens: maxResponseTokens,
});

Issue #2: Neuron Consumption Discrepancies in Dashboard

Error: Dashboard neuron usage significantly exceeds expected token-based calculations
Source: Cloudflare Community Discussion
Why It Happens: Users report dashboard showing hundred-million-level neuron consumption for K-level token usage, particularly with AutoRAG features and certain models. The discrepancy between expected neuron consumption (based on pricing docs) and actual dashboard metrics is not fully documented.
Prevention: Monitor neuron usage via AI Gateway logs and correlate with requests. File support ticket if consumption significantly exceeds expectations.

// Use AI Gateway for detailed request logging
const response = await env.AI.run(
  '@cf/meta/llama-3.1-8b-instruct',
  { messages: [{ role: 'user', content: query }] },
  { gateway: { id: 'my-gateway' } }
);

// Monitor dashboard at: https://dash.cloudflare.com → AI → Workers AI
// Compare neuron usage with token counts
// File support ticket with details if discrepancy persists

Issue #3: AI Binding Requires Remote or Latest Tooling in Local Dev

Error: "MiniflareCoreError: wrapped binding module can't be resolved (internal modules only)"
Source: GitHub Issue #6796
Why It Happens: When using Workers AI bindings with Miniflare in local development (particularly with custom Vite plugins), the AI binding requires external workers that aren't properly exposed by older unstable_getMiniflareWorkerOptions. The error occurs when Miniflare can't resolve the internal AI worker module.
Prevention: Use remote bindings for AI in local dev, or update to latest @cloudflare/vite-plugin.

// wrangler.jsonc - Option 1: Use remote AI binding in local dev
{
  "ai": { "binding": "AI" },
  "dev": {
    "remote": true // Use production AI binding locally
  }
}
# Option 2: Update to latest tooling
npm install -D @cloudflare/vite-plugin@latest

# Option 3: Use wrangler dev instead of custom Miniflare
npm run dev

Issue #4: Flux Image Generation NSFW Filter False Positives

Error: "AiError: Input prompt contains NSFW content (code 3030)" for innocent prompts
Source: Cloudflare Community Discussion
Why It Happens: Flux image generation models (@cf/black-forest-labs/flux-1-schnell) sometimes trigger false positive NSFW content errors even with innocent single-word prompts like "hamburger". The NSFW filter can be overly sensitive without context.
Prevention: Add descriptive context around potential trigger words instead of using single-word prompts.

// ❌ May trigger error 3030
const response = await env.AI.run('@cf/black-forest-labs/flux-1-schnell', {
  prompt: 'hamburger', // Single word triggers filter
});

// ✅ Add context to avoid false positives
const response = await env.AI.run('@cf/black-forest-labs/flux-1-schnell', {
  prompt: 'A photo of a delicious large hamburger on a plate with lettuce and tomato',
  num_steps: 4,
});

Issue #5: Image Generation Error 1000 - Missing num_steps Parameter

Error: "Error: unexpected type 'int32' with value 'undefined' (code 1000)"
Source: Cloudflare Community Discussion
Why It Happens: Image generation API calls return error code 1000 when the num_steps parameter is not provided, even though documentation suggests it's optional. The parameter is actually required for most Flux models.
Prevention: Always include num_steps: 4 for image generation models (typically 4 for Flux Schnell).

// ✅ Always include num_steps for image generation
const image = await env.AI.run('@cf/black-forest-labs/flux-1-schnell', {
  prompt: 'A beautiful sunset over mountains',
  num_steps: 4, // Required - typically 4 for Flux Schnell
});

// Note: FLUX.2 [klein] 4B has fixed steps=4 (cannot be adjusted)

Issue #6: Zod v4 Incompatibility with Structured Output Tools

Error: Syntax errors and failed transpilation when using Stagehand with Zod v4
Source: GitHub Issue #10798
Why It Happens: Stagehand (browser automation) and some structured output examples in Workers AI fail with Zod v4 (now default). The underlying zod-to-json-schema library doesn't yet support Zod v4, causing transpilation failures.
Prevention: Pin Zod to v3 until zod-to-json-schema supports v4.

# Install Zod v3 specifically
npm install zod@3

# Or pin in package.json
{
  "dependencies": {
    "zod": "~3.23.8" // Pin to v3 for compatibility
  }
}

Issue #7: AI Gateway Cache Headers for Per-Request Control

Not an error, but important feature: AI Gateway supports per-request cache control via HTTP headers for custom TTL, cache bypass, and custom cache keys beyond dashboard defaults.
Source: AI Gateway Caching Documentation
Use When: You need different caching behavior for different requests (e.g., 1 hour for expensive queries, skip cache for real-time data).
Implementation: See AI Gateway Integration section below for header usage.


API Reference

env.AI.run(
  model: string,
  inputs: ModelInputs,
  options?: { gateway?: { id: string; skipCache?: boolean } }
): Promise<ModelOutput | ReadableStream>

Model Selection Guide (Updated 2025)

Text Generation (LLMs)

Model Best For Rate Limit Size Notes
2025 Models
@cf/meta/llama-4-scout-17b-16e-instruct Latest Llama, general purpose 300/min 17B NEW 2025
@cf/openai/gpt-oss-120b Largest open-source GPT 300/min 120B NEW 2025
@cf/openai/gpt-oss-20b Smaller open-source GPT 300/min 20B NEW 2025
@cf/google/gemma-3-12b-it 128K context, 140+ languages 300/min 12B NEW 2025, vision
@cf/mistralai/mistral-small-3.1-24b-instruct Vision + tool calling 300/min 24B NEW 2025
@cf/qwen/qwq-32b Reasoning, complex tasks 300/min 32B NEW 2025
@cf/qwen/qwen2.5-coder-32b-instruct Coding specialist 300/min 32B NEW 2025
@cf/qwen/qwen3-30b-a3b-fp8 Fast quantized 300/min 30B NEW 2025
@cf/ibm-granite/granite-4.0-h-micro Small, efficient 300/min Micro NEW 2025
Performance (2025)
@cf/meta/llama-3.3-70b-instruct-fp8-fast 2-4x faster (2025 update) 300/min 70B Speculative decoding
@cf/meta/llama-3.1-8b-instruct-fp8-fast Fast 8B variant 300/min 8B -
Standard Models
@cf/meta/llama-3.1-8b-instruct General purpose 300/min 8B -
@cf/meta/llama-3.2-1b-instruct Ultra-fast, simple tasks 300/min 1B -
@cf/deepseek-ai/deepseek-r1-distill-qwen-32b Coding, technical 300/min 32B -

Text Embeddings (2x Faster - 2025)

Model Dimensions Best For Rate Limit Notes
@cf/google/embeddinggemma-300m 768 Best-in-class RAG 3000/min NEW 2025
@cf/baai/bge-base-en-v1.5 768 General RAG (2x faster) 3000/min pooling: "cls" recommended
@cf/baai/bge-large-en-v1.5 1024 High accuracy (2x faster) 1500/min pooling: "cls" recommended
@cf/baai/bge-small-en-v1.5 384 Fast, low storage (2x faster) 3000/min pooling: "cls" recommended
@cf/qwen/qwen3-embedding-0.6b 768 Qwen embeddings 3000/min NEW 2025

CRITICAL (2025): BGE models now support pooling: "cls" parameter (recommended) but NOT backwards compatible with pooling: "mean" (default).

Image Generation

Model Best For Rate Limit Notes
@cf/black-forest-labs/flux-1-schnell High quality, photorealistic 720/min ⚠️ See warnings below
@cf/leonardo/lucid-origin Leonardo AI style 720/min NEW 2025, requires num_steps
@cf/leonardo/phoenix-1.0 Leonardo AI variant 720/min NEW 2025, requires num_steps
@cf/stabilityai/stable-diffusion-xl-base-1.0 General purpose 720/min Requires num_steps

⚠️ Common Image Generation Issues:
- Error 1000: Always include num_steps: 4 parameter (required despite docs suggesting optional)
- Error 3030 (NSFW filter): Single words like "hamburger" may trigger false positives - add descriptive context to prompts

// ✅ Correct pattern for image generation
const image = await env.AI.run('@cf/black-forest-labs/flux-1-schnell', {
  prompt: 'A photo of a delicious hamburger on a plate with fresh vegetables',
  num_steps: 4, // Required to avoid error 1000
});
// Descriptive context helps avoid NSFW false positives (error 3030)

Vision Models

Model Best For Rate Limit Notes
@cf/meta/llama-3.2-11b-vision-instruct Image understanding 720/min -
@cf/google/gemma-3-12b-it Vision + text (128K context) 300/min NEW 2025

Audio Models (2025)

Model Type Rate Limit Notes
@cf/deepgram/aura-2-en Text-to-speech (English) 720/min NEW 2025
@cf/deepgram/aura-2-es Text-to-speech (Spanish) 720/min NEW 2025
@cf/deepgram/nova-3 Speech-to-text (+ WebSocket) 720/min NEW 2025
@cf/openai/whisper-large-v3-turbo Speech-to-text (faster) 720/min NEW 2025

Common Patterns

RAG (Retrieval Augmented Generation)

// 1. Generate embeddings
const embeddings = await env.AI.run('@cf/baai/bge-base-en-v1.5', { text: [userQuery] });

// 2. Search Vectorize
const matches = await env.VECTORIZE.query(embeddings.data[0], { topK: 3 });
const context = matches.matches.map((m) => m.metadata.text).join('\n\n');

// 3. Generate with context
const response = await env.AI.run('@cf/meta/llama-3.1-8b-instruct', {
  messages: [
    { role: 'system', content: `Answer using this context:\n${context}` },
    { role: 'user', content: userQuery },
  ],
  stream: true,
});

Structured Output with Zod

import { z } from 'zod';

const Schema = z.object({ name: z.string(), items: z.array(z.string()) });

const response = await env.AI.run('@cf/meta/llama-3.1-8b-instruct', {
  messages: [{
    role: 'user',
    content: `Generate JSON matching: ${JSON.stringify(Schema.shape)}`
  }],
});

const validated = Schema.parse(JSON.parse(response.response));

AI Gateway Integration

Provides caching, logging, cost tracking, and analytics for AI requests.

Basic Gateway Usage

const response = await env.AI.run(
  '@cf/meta/llama-3.1-8b-instruct',
  { prompt: 'Hello' },
  { gateway: { id: 'my-gateway', skipCache: false } }
);

// Access logs and send feedback
const gateway = env.AI.gateway('my-gateway');
await gateway.patchLog(env.AI.aiGatewayLogId, {
  feedback: { rating: 1, comment: 'Great response' },
});

Per-Request Cache Control (Advanced)

Override default cache behavior with HTTP headers for fine-grained control:

// Custom cache TTL (1 hour for expensive queries)
const response = await fetch(
  `https://gateway.ai.cloudflare.com/v1/${accountId}/${gatewayId}/workers-ai/@cf/meta/llama-3.1-8b-instruct`,
  {
    method: 'POST',
    headers: {
      'Authorization': `Bearer ${env.CLOUDFLARE_API_KEY}`,
      'Content-Type': 'application/json',
      'cf-aig-cache-ttl': '3600', // 1 hour in seconds (min: 60, max: 2592000)
    },
    body: JSON.stringify({
      messages: [{ role: 'user', content: prompt }],
    }),
  }
);

// Skip cache for real-time data
const response = await fetch(gatewayUrl, {
  headers: {
    'cf-aig-skip-cache': 'true', // Bypass cache entirely
  },
  // ...
});

// Check if response was cached
const cacheStatus = response.headers.get('cf-aig-cache-status'); // "HIT" or "MISS"

Available Cache Headers:
- cf-aig-cache-ttl: Set custom TTL in seconds (60s to 1 month)
- cf-aig-skip-cache: Bypass cache entirely ('true')
- cf-aig-cache-key: Custom cache key for granular control
- cf-aig-cache-status: Response header showing "HIT" or "MISS"

Benefits: Cost tracking, caching (reduces duplicate inference), logging, rate limiting, analytics, per-request cache customization.


Rate Limits & Pricing (Updated 2025)

Rate Limits (per minute)

Task Type Default Limit Notes
Text Generation 300/min Some fast models: 400-1500/min
Text Embeddings 3000/min BGE-large: 1500/min
Image Generation 720/min All image models
Vision Models 720/min Image understanding
Audio (TTS/STT) 720/min Deepgram, Whisper
Translation 720/min M2M100, Opus MT
Classification 2000/min Text classification

Pricing (Unit-Based, Billed in Neurons - 2025)

Free Tier:
- 10,000 neurons per day
- Resets daily at 00:00 UTC

Paid Tier ($0.011 per 1,000 neurons):
- 10,000 neurons/day included
- Unlimited usage above free allocation

2025 Model Costs (per 1M tokens):

Model Input Output Notes
2025 Models
Llama 4 Scout 17B $0.270 $0.850 NEW 2025
GPT-OSS 120B $0.350 $0.750 NEW 2025
GPT-OSS 20B $0.200 $0.300 NEW 2025
Gemma 3 12B $0.345 $0.556 NEW 2025
Mistral 3.1 24B $0.351 $0.555 NEW 2025
Qwen QwQ 32B $0.660 $1.000 NEW 2025
Qwen Coder 32B $0.660 $1.000 NEW 2025
IBM Granite Micro $0.017 $0.112 NEW 2025
EmbeddingGemma 300M $0.012 N/A NEW 2025
Qwen3 Embedding 0.6B $0.012 N/A NEW 2025
Performance (2025)
Llama 3.3 70B Fast $0.293 $2.253 2-4x faster
Llama 3.1 8B FP8 Fast $0.045 $0.384 Fast variant
Standard Models
Llama 3.2 1B $0.027 $0.201 -
Llama 3.1 8B $0.282 $0.827 -
Deepseek R1 32B $0.497 $4.881 -
BGE-base (2x faster) $0.067 N/A 2025 speedup
BGE-large (2x faster) $0.204 N/A 2025 speedup
Image Models (2025)
Flux 1 Schnell $0.0000528 per 512x512 tile -
Leonardo Lucid $0.006996 per 512x512 tile NEW 2025
Leonardo Phoenix $0.005830 per 512x512 tile NEW 2025
Audio Models (2025)
Deepgram Aura 2 $0.030 per 1k chars NEW 2025
Deepgram Nova 3 $0.0052 per audio min NEW 2025
Whisper v3 Turbo $0.0005 per audio min NEW 2025

Error Handling with Retry

async function runAIWithRetry(
  env: Env,
  model: string,
  inputs: any,
  maxRetries = 3
): Promise<any> {
  let lastError: Error;

  for (let i = 0; i < maxRetries; i++) {
    try {
      return await env.AI.run(model, inputs);
    } catch (error) {
      lastError = error as Error;

      // Rate limit - retry with exponential backoff
      if (lastError.message.toLowerCase().includes('rate limit')) {
        await new Promise((resolve) => setTimeout(resolve, Math.pow(2, i) * 1000));
        continue;
      }

      throw error; // Other errors - fail immediately
    }
  }

  throw lastError!;
}

OpenAI Compatibility

import OpenAI from 'openai';

const openai = new OpenAI({
  apiKey: env.CLOUDFLARE_API_KEY,
  baseURL: `https://api.cloudflare.com/client/v4/accounts/${env.ACCOUNT_ID}/ai/v1`,
});

// Chat completions
await openai.chat.completions.create({
  model: '@cf/meta/llama-3.1-8b-instruct',
  messages: [{ role: 'user', content: 'Hello!' }],
});

Endpoints: /v1/chat/completions, /v1/embeddings


Vercel AI SDK Integration (workers-ai-provider v3.0.2)

import { createWorkersAI } from 'workers-ai-provider'; // v3.0.2 with AI SDK v5
import { generateText, streamText } from 'ai';

const workersai = createWorkersAI({ binding: env.AI });

// Generate or stream
await generateText({
  model: workersai('@cf/meta/llama-3.1-8b-instruct'),
  prompt: 'Write a poem',
});

Community Tips

Note: These tips come from community discussions and production experience.

Hono Framework Streaming Pattern

When using Workers AI streaming with Hono, return the stream directly as a Response (not through Hono's streaming utilities):

import { Hono } from 'hono';

type Bindings = { AI: Ai };
const app = new Hono<{ Bindings: Bindings }>();

app.post('/chat', async (c) => {
  const { prompt } = await c.req.json();

  const stream = await c.env.AI.run('@cf/meta/llama-3.1-8b-instruct', {
    messages: [{ role: 'user', content: prompt }],
    stream: true,
  });

  // Return stream directly (not c.stream())
  return new Response(stream, {
    headers: {
      'content-type': 'text/event-stream',
      'cache-control': 'no-cache',
      'connection': 'keep-alive',
    },
  });
});

Source: Hono Discussion #2409

Troubleshooting Unexplained AI Binding Failures

If experiencing unexplained Workers AI failures:

# 1. Check wrangler version
npx wrangler --version

# 2. Clear wrangler cache
rm -rf ~/.wrangler

# 3. Update to latest stable
npm install -D wrangler@latest

# 4. Check local network/firewall settings
# Some corporate firewalls block Workers AI endpoints

Note: Most "version incompatibility" issues turn out to be network configuration problems.


References

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.