Use when you have a written implementation plan to execute in a separate session with review checkpoints
3
0
# Install this skill:
npx skills add Mindrally/skills --skill "elasticsearch-best-practices"
Install specific skill from multi-skill repository
# Description
Elasticsearch development best practices for indexing, querying, and search optimization
# SKILL.md
name: elasticsearch-best-practices
description: Elasticsearch development best practices for indexing, querying, and search optimization
Elasticsearch Best Practices
Core Principles
- Design indices and mappings based on query patterns
- Optimize for search performance with proper analysis and indexing
- Use appropriate shard sizing and cluster configuration
- Implement proper security and access control
- Monitor cluster health and optimize queries
Index Design
Mapping Best Practices
- Define explicit mappings instead of relying on dynamic mapping
- Use appropriate data types for each field
- Disable indexing for fields you do not search on
- Use keyword type for exact matches, text for full-text search
{
"mappings": {
"properties": {
"product_id": {
"type": "keyword"
},
"name": {
"type": "text",
"analyzer": "standard",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"description": {
"type": "text",
"analyzer": "english"
},
"price": {
"type": "scaled_float",
"scaling_factor": 100
},
"category": {
"type": "keyword"
},
"tags": {
"type": "keyword"
},
"created_at": {
"type": "date"
},
"metadata": {
"type": "object",
"enabled": false
},
"location": {
"type": "geo_point"
}
}
}
}
Field Types
keyword: Exact values, filtering, aggregations, sortingtext: Full-text search with analysisdate: Date/time values with format specificationnumeric types: long, integer, short, byte, double, float, scaled_floatboolean: True/false valuesgeo_point: Latitude/longitude pairsnested: Arrays of objects that need independent querying
Index Settings
{
"settings": {
"number_of_shards": 3,
"number_of_replicas": 1,
"refresh_interval": "30s",
"analysis": {
"analyzer": {
"custom_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": ["lowercase", "asciifolding", "synonym_filter"]
}
},
"filter": {
"synonym_filter": {
"type": "synonym",
"synonyms": ["laptop, notebook", "phone, mobile, smartphone"]
}
}
}
}
}
Shard Sizing
Guidelines
- Target 20-40GB per shard
- Aim for ~20 shards per GB of heap
- Avoid oversharding (too many small shards)
- Consider time-based indices for time-series data
{
"settings": {
"number_of_shards": 3,
"number_of_replicas": 1
}
}
Index Lifecycle Management (ILM)
{
"policy": {
"phases": {
"hot": {
"min_age": "0ms",
"actions": {
"rollover": {
"max_size": "50gb",
"max_age": "7d"
}
}
},
"warm": {
"min_age": "30d",
"actions": {
"shrink": {
"number_of_shards": 1
},
"forcemerge": {
"max_num_segments": 1
}
}
},
"delete": {
"min_age": "90d",
"actions": {
"delete": {}
}
}
}
}
}
Query Optimization
Query Types
Match Query (Full-text search)
{
"query": {
"match": {
"description": {
"query": "wireless bluetooth headphones",
"operator": "and",
"fuzziness": "AUTO"
}
}
}
}
Term Query (Exact match)
{
"query": {
"term": {
"status": "active"
}
}
}
Bool Query (Combining queries)
{
"query": {
"bool": {
"must": [
{ "match": { "name": "laptop" } }
],
"filter": [
{ "term": { "category": "electronics" } },
{ "range": { "price": { "gte": 500, "lte": 2000 } } }
],
"should": [
{ "term": { "brand": "apple" } }
],
"must_not": [
{ "term": { "status": "discontinued" } }
]
}
}
}
Query Best Practices
- Use
filtercontext for non-scoring queries (cacheable) - Use
mustonly when scoring is needed - Avoid wildcards at the beginning of terms
- Use
keywordfields for exact matches - Limit result size with
sizeparameter
{
"query": {
"bool": {
"must": {
"multi_match": {
"query": "search terms",
"fields": ["name^3", "description", "tags^2"],
"type": "best_fields"
}
},
"filter": [
{ "term": { "active": true } },
{ "range": { "created_at": { "gte": "now-30d" } } }
]
}
},
"size": 20,
"from": 0,
"_source": ["name", "price", "category"]
}
Aggregations
Common Aggregation Patterns
{
"size": 0,
"aggs": {
"categories": {
"terms": {
"field": "category",
"size": 10
},
"aggs": {
"avg_price": {
"avg": { "field": "price" }
}
}
},
"price_ranges": {
"range": {
"field": "price",
"ranges": [
{ "to": 100 },
{ "from": 100, "to": 500 },
{ "from": 500 }
]
}
},
"date_histogram": {
"date_histogram": {
"field": "created_at",
"calendar_interval": "month"
}
}
}
}
Aggregation Best Practices
- Use
size: 0when you only need aggregations - Set appropriate
shard_sizefor terms aggregations - Use composite aggregations for pagination
- Consider using
aggsfilters to narrow scope
Indexing Best Practices
Bulk Indexing
POST _bulk
{ "index": { "_index": "products", "_id": "1" } }
{ "name": "Product 1", "price": 99.99 }
{ "index": { "_index": "products", "_id": "2" } }
{ "name": "Product 2", "price": 149.99 }
Bulk API Guidelines
- Use bulk API for batch operations
- Optimal bulk size: 5-15MB per request
- Monitor for rejected requests (thread pool queue full)
- Disable refresh during bulk indexing for better performance
PUT /products/_settings
{
"refresh_interval": "-1"
}
// After bulk indexing:
PUT /products/_settings
{
"refresh_interval": "1s"
}
POST /products/_refresh
Document Updates
POST /products/_update/1
{
"doc": {
"price": 89.99,
"updated_at": "2024-01-15T10:30:00Z"
}
}
// Update by query
POST /products/_update_by_query
{
"query": {
"term": { "category": "electronics" }
},
"script": {
"source": "ctx._source.on_sale = true"
}
}
Analysis and Tokenization
Custom Analyzers
{
"settings": {
"analysis": {
"analyzer": {
"product_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"lowercase",
"asciifolding",
"english_stop",
"english_stemmer"
]
},
"autocomplete_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"lowercase",
"edge_ngram_filter"
]
}
},
"filter": {
"english_stop": {
"type": "stop",
"stopwords": "_english_"
},
"english_stemmer": {
"type": "stemmer",
"language": "english"
},
"edge_ngram_filter": {
"type": "edge_ngram",
"min_gram": 2,
"max_gram": 15
}
}
}
}
}
Test Analyzer
POST /products/_analyze
{
"analyzer": "product_analyzer",
"text": "Wireless Bluetooth Headphones"
}
Search Features
Autocomplete/Suggestions
{
"mappings": {
"properties": {
"name": {
"type": "text",
"fields": {
"suggest": {
"type": "completion"
}
}
}
}
}
}
// Query suggestions
{
"suggest": {
"product-suggest": {
"prefix": "wire",
"completion": {
"field": "name.suggest",
"size": 5
}
}
}
}
Highlighting
{
"query": {
"match": { "description": "wireless" }
},
"highlight": {
"fields": {
"description": {
"pre_tags": ["<em>"],
"post_tags": ["</em>"],
"fragment_size": 150
}
}
}
}
Performance Optimization
Query Caching
- Filter queries are cached automatically
- Use
filtercontext for frequently repeated conditions - Monitor cache hit rates
Search Performance
- Avoid deep pagination (use
search_afterinstead) - Limit
_sourcefields returned - Use
doc_valuesfor sorting and aggregations - Pre-sort index for common sort orders
{
"query": { "match_all": {} },
"size": 20,
"search_after": [1705329600000, "product_123"],
"sort": [
{ "created_at": "desc" },
{ "_id": "asc" }
]
}
Monitoring and Maintenance
Cluster Health
GET _cluster/health
GET _cat/indices?v
GET _cat/shards?v
GET _nodes/stats
Index Maintenance
POST /products/_forcemerge?max_num_segments=1
POST /products/_cache/clear
POST /products/_refresh
Slow Query Log
PUT /products/_settings
{
"index.search.slowlog.threshold.query.warn": "10s",
"index.search.slowlog.threshold.query.info": "5s",
"index.search.slowlog.threshold.fetch.warn": "1s"
}
Security
Index-Level Security
PUT _security/role/products_reader
{
"indices": [
{
"names": ["products*"],
"privileges": ["read"]
}
]
}
Field-Level Security
PUT _security/role/limited_access
{
"indices": [
{
"names": ["users"],
"privileges": ["read"],
"field_security": {
"grant": ["name", "email", "created_at"]
}
}
]
}
Aliases and Reindexing
Index Aliases
POST _aliases
{
"actions": [
{ "add": { "index": "products_v2", "alias": "products" } },
{ "remove": { "index": "products_v1", "alias": "products" } }
]
}
Reindex with Transformation
POST _reindex
{
"source": {
"index": "products_v1"
},
"dest": {
"index": "products_v2"
},
"script": {
"source": "ctx._source.migrated_at = new Date().toString()"
}
}
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Amp
Antigravity
Claude Code
Clawdbot
Codex
Cursor
Droid
Gemini CLI
GitHub Copilot
Goose
Kilo Code
Kiro CLI
OpenCode
Roo Code
Trae
Windsurf
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.