pingqLIN

In your CI script

0
0
# Install this skill:
npx skills add pingqLIN/skill-0

Or install specific skill: npx add-skill https://github.com/pingqLIN/skill-0

# Description

just a general classification program

# SKILL.md

Skill-0 Tool Portal

🔧 Complete guide to skill decomposition workflow and toolchain

Quick Start

Installation

git clone https://github.com/pingqLIN/skill-0.git
cd skill-0
pip install -r requirements.txt

First Run

# Index existing skills
python -m src.vector_db.search --db db/skills.db --parsed-dir data/parsed index

# Search for skills
python -m src.vector_db.search search "document processing"

# Analyze patterns
python src/tools/analyzer.py -p data/parsed -o data/analysis/report.json

Tool Suite Overview

skill-0/src/tools/
├── analyzer.py           # 📊 Statistical analysis
├── pattern_extractor.py  # 🔍 Pattern discovery
├── evaluate.py           # ✅ Coverage evaluation
└── batch_parse.py        # 🔄 Batch processing

skill-0/src/vector_db/
├── embedder.py           # 🧠 Embedding generation
├── vector_store.py       # 💾 SQLite-vec storage
└── search.py             # 🔎 Semantic search CLI

1. Analyzer Tool

Purpose

Generate comprehensive statistics about parsed skills

Usage

# Basic analysis
python src/tools/analyzer.py

# Custom paths
python src/tools/analyzer.py -p data/parsed -o data/analysis/report.json

# With text report
python src/tools/analyzer.py -t

Output Structure

{
  "summary": {
    "total_skills": 32,
    "total_actions": 266,
    "total_rules": 84,
    "total_directives": 120
  },
  "action_types": {
    "io_read": 124,
    "io_write": 90,
    "transform": 28,
    ...
  },
  "directive_types": {
    "completion": 45,
    "knowledge": 30,
    "principle": 20,
    ...
  },
  "skills": [ /* per-skill breakdown */ ]
}

Use Cases

  • Project health monitoring
  • Coverage verification
  • Pattern identification
  • Before/after comparisons

2. Pattern Extractor

Purpose

Discover common patterns across skills for reuse and standardization

Usage

# Extract patterns
python src/tools/pattern_extractor.py

# Custom output
python src/tools/pattern_extractor.py -o data/analysis/patterns.json

Pattern Types

Action Combinations

Frequently occurring action sequences

{
  "pattern_type": "action_combination",
  "actions": ["io_read", "transform", "io_write"],
  "frequency": 15,
  "example_skills": ["docx-skill", "pdf-skill", "xlsx-skill"]
}

Directive Usage

Common directive patterns

{
  "pattern_type": "directive_usage",
  "directive_types": ["completion", "constraint"],
  "usage_context": "Document processing",
  "frequency": 8
}

Structure Patterns

Element ratio patterns

{
  "pattern_type": "structure",
  "ratio": "3:1:2",
  "elements": "actions:rules:directives",
  "category": "Data processing"
}

Use Cases

  • Template creation
  • Best practice identification
  • Duplicate detection
  • Framework evolution

3. Evaluation Tool

Purpose

Assess framework coverage and identify gaps

Usage

# Evaluate coverage
python src/tools/evaluate.py -p data/parsed

# Detailed report
python src/tools/evaluate.py -p data/parsed -o data/analysis/evaluation.json

Metrics

  • Action Type Coverage: % of action types used
  • Directive Type Coverage: % of directive types used
  • Completeness Score: Overall decomposition quality
  • Pattern Diversity: Variety in skill structures

Output

{
  "coverage": {
    "action_types": {
      "total": 8,
      "used": 8,
      "percentage": 100
    },
    "directive_types": {
      "total": 6,
      "used": 6,
      "percentage": 100
    }
  },
  "gaps": [],
  "recommendations": [
    "Add more constraint-type directives",
    "Increase rule diversity in condition types"
  ]
}

4. Batch Parser

Purpose

Parse multiple skills efficiently with consistent formatting

Usage

# Parse directory
python src/tools/batch_parse.py -i input_skills/ -o data/parsed/

# With validation
python src/tools/batch_parse.py -i input_skills/ -o data/parsed/ --validate

# Dry run
python src/tools/batch_parse.py -i input_skills/ --dry-run

Input Format

Accepts various formats:

  • Markdown skill definitions
  • JSON pre-formatted
  • Plain text descriptions (requires LLM)

Features

  • Schema validation
  • ID auto-increment
  • Duplicate detection
  • Parallel processing

5. Vector Search System

Purpose

Semantic search and clustering for skill discovery

Setup

# One-time indexing
python -m src.vector_db.search --db db/skills.db --parsed-dir data/parsed index

Commands

Search by Query

python -m src.vector_db.search search "creative design tools"

Output:

🔍 Searching for: creative design tools
--------------------------------------------------
1. Canvas-Design Skill (53.36%)
2. Theme Factory (46.14%)
3. Pptx Skill (45.08%)

Find Similar Skills

python -m src.vector_db.search similar "Docx Skill"

Output:

🔍 Finding skills similar to: Docx Skill
--------------------------------------------------
1. Xlsx Skill (87.23%)
2. Pdf Skill (82.14%)
3. Txt File Skill (76.89%)

Cluster Analysis

python -m src.vector_db.search cluster -n 5

Output:

📊 Clustering 32 skills into 5 groups...
--------------------------------------------------
Cluster 1: Development Tools (10 skills)
  - MCP Server, Testing Framework, ...

Cluster 2: Document Processing (5 skills)
  - PDF Skill, DOCX Skill, ...

Statistics

python -m src.vector_db.search stats

Output:

📊 Skill Database Statistics
--------------------------------------------------
Total Skills: 32
Indexed Skills: 32
Embedding Dimension: 384
Database Size: 1.73 MB
Last Updated: 2026-01-28

Python API

from src.vector_db import SemanticSearch

# Initialize
search = SemanticSearch(db_path='db/skills.db')

# Search
results = search.search("PDF processing", limit=5)
for r in results:
    print(f"{r['name']}: {r['similarity']:.2%}")

# Find similar
similar = search.find_similar("Docx Skill", limit=5)

# Cluster
clusters = search.cluster_skills(n_clusters=5)

Workflow Examples

Adding a New Skill

Step 1: Create JSON

cp data/parsed/template.json data/parsed/my-skill.json
# Edit my-skill.json with your decomposition

Step 2: Validate

python src/tools/analyzer.py -p data/parsed/my-skill.json

Step 3: Index

python -m src.vector_db.search index

Step 4: Verify

python -m src.vector_db.search search "my skill description"

Analyzing a Skill Category

Step 1: Filter Skills

python -m src.vector_db.search search "document processing" > doc_skills.txt

Step 2: Extract Patterns

python src/tools/pattern_extractor.py -p data/parsed/ -o patterns_doc.json

Step 3: Compare

python src/tools/analyzer.py -p data/parsed/ -t > comparison.txt

Batch Migration

Step 1: Prepare Source

# Organize skills in input/
ls input/
# skill1.md  skill2.md  skill3.json

Step 2: Batch Parse

python src/tools/batch_parse.py -i input/ -o data/parsed/ --validate

Step 3: Re-index

python -m src.vector_db.search index

Step 4: Evaluate

python src/tools/evaluate.py -p data/parsed

Performance Tips

Large Datasets

  • Use --batch-size for batch operations
  • Enable parallel processing with -j flag
  • Pre-filter with --filter patterns

Memory Optimization

  • Index incrementally for >100 skills
  • Use --checkpoint for long operations
  • Clear cache between major operations

Search Optimization

  • Cache frequent queries
  • Use clustering for categorization
  • Limit results with --limit

Common Patterns

Document Processing Skills

Pattern: io_read → transform → io_write
Elements: 3-5 actions, 1-2 rules, 2-3 directives
Directives: completion, constraint

API Integration Skills

Pattern: external_call → state_check → transform
Elements: 2-4 actions, 2-3 rules, 1-2 directives
Directives: strategy, knowledge

Creative Tools

Pattern: await_input → llm_inference → io_write
Elements: 4-6 actions, 1 rule, 3-4 directives
Directives: preference, principle

Troubleshooting

Issue: Schema Validation Fails

# Check schema version
grep schema_version data/parsed/your-skill.json

# Validate manually
python -c "
import json, jsonschema
schema = json.load(open('schema/skill-decomposition.schema.json'))
data = json.load(open('data/parsed/your-skill.json'))
jsonschema.validate(data, schema)
"

Issue: Embeddings Out of Date

# Re-index everything
python -m src.vector_db.search index --force

# Check stats
python -m src.vector_db.search stats

Issue: Pattern Extraction Slow

# Use sampling
python src/tools/pattern_extractor.py --sample-size 20

# Parallel processing
python src/tools/pattern_extractor.py -j 4

Integration Examples

With GitHub Actions

name: Validate Skills
on: [push]
jobs:
  validate:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v2
      - name: Install deps
        run: pip install -r requirements.txt
      - name: Validate
        run: python src/tools/analyzer.py -p data/parsed

With Pre-commit Hook

# .git/hooks/pre-commit
#!/bin/bash
python src/tools/analyzer.py -p data/parsed || exit 1
python src/tools/evaluate.py -p data/parsed || exit 1

With CI/CD Pipeline

# In your CI script
python src/tools/batch_parse.py -i new_skills/ -o data/parsed/ --validate
python -m src.vector_db.search index
python src/tools/evaluate.py -p data/parsed > coverage_report.txt

Resources

Documentation

Tools

Support


Last updated: 2026-01-28

# README.md

Skill-0: Skill Decomposition Parser

中文版

A ternary classification system for parsing the internal structure of Claude Skills and MCP Tools

Python 3.8+
License: MIT
Schema Version

Overview

Skill-0 is a classification system that parses AI/Chatbot Skills (especially Claude Skills and MCP Tools) into structured components. It includes semantic search powered by vector embeddings for intelligent skill discovery.

Ternary Classification System

Organizes and defines the immutable parts of a Skill (or parts that change behavior when modified) into three categories:




Skill Ternary Classification Diagram

Category Definition Characteristics
Action Atomic operation: indivisible basic operation Deterministic result, no conditional branching, atomic
Rule Atomic judgment: pure conditional evaluation/classification Returns boolean/classification result
Directive Descriptive statement: decomposable but chosen not to at this level Contains completion state, knowledge, principles, constraints, etc.

Directive Types

Type Description Example
completion Completion state description "All tables extracted"
knowledge Domain knowledge "PDF format specification"
principle Guiding principle "Optimize Context Window"
constraint Constraint condition "Max 25,000 tokens"
preference Preference setting "User prefers JSON format"
strategy Strategy guideline "Retry three times on error"

Directive Provenance (Optional)

Skills/Tools may come from diverse sources where the original intent cannot be fully verified. To preserve the original spirit, a Directive can optionally include provenance in two tiers:

  • basic: minimal traceability + verbatim excerpt
  • full: adds location + extraction/translation metadata (backend can encode based on this)

Basic

"provenance": {
  "level": "basic",
  "source": { "kind": "mcp_tool", "ref": "example-tool" },
  "original_text": "Prefer concise output"
}

Full

"provenance": {
  "level": "full",
  "source": { "kind": "claude_skill", "ref": "converted-skills/docx/SKILL.md", "version": "v1" },
  "original_text": "Keep changes minimal",
  "location": { "locator": "SKILL.md#L120" },
  "extraction": { "method": "llm", "inferred": true, "confidence": 0.7 }
}

ID Format

Element Pattern Example
Action a_XXX a_001, a_002
Rule r_XXX r_001, r_002
Directive d_XXX d_001, d_002

Project Structure




Skill-0 Project Structure

Installation

# Clone the repository
git clone https://github.com/pingqLIN/skill-0.git
cd skill-0

# Install dependencies
pip install -r requirements.txt

# Index skills (first time)
python -m src.vector_db.search --db db/skills.db --parsed-dir data/parsed index

Testing

The project includes a comprehensive test suite for tool and code equivalence verification:

# Run all tests
python3 -m pytest tests/ -v

# Run specific test categories
python3 -m pytest tests/test_helper.py::TestSkillValidator -v
python3 -m pytest tests/test_helper.py::TestIntegrationWorkflows -v

Test Coverage: 32 tests covering:

  • ✅ Schema validation (tool equivalence)
  • ✅ Format conversion (code equivalence)
  • ✅ Execution path testing
  • ✅ Template generation
  • ✅ Error handling
  • ✅ Integration workflows

See tests/README.md for detailed test documentation.

Skill-0 includes a powerful semantic search engine powered by all-MiniLM-L6-v2 embeddings and SQLite-vec.

CLI Commands

# Index all skills
python -m src.vector_db.search --db db/skills.db --parsed-dir data/parsed index

# Search by natural language
python -m src.vector_db.search --db db/skills.db search "PDF document processing"

# Find similar skills
python -m src.vector_db.search --db db/skills.db similar "Docx Skill"

# Cluster analysis (auto-grouping)
python -m src.vector_db.search --db db/skills.db cluster -n 5

# Show statistics
python -m src.vector_db.search --db db/skills.db stats

Search Examples

$ python -m src.vector_db.search search "creative design visual art"

🔍 Searching for: creative design visual art
--------------------------------------------------
1. Canvas-Design Skill (53.36%)
2. Theme Factory (46.14%)
3. Anthropic Brand Styling (45.54%)
4. Slack GIF Creator (45.44%)
5. Pptx Skill (45.08%)

Search completed in 72.6ms

Python API

from src.vector_db import SemanticSearch

# Initialize search engine
search = SemanticSearch(db_path='db/skills.db')

# Semantic search
results = search.search("PDF processing", limit=5)
for r in results:
    print(f"{r['name']}: {r['similarity']:.2%}")

# Find similar skills
similar = search.find_similar("Docx Skill", limit=5)

# Cluster analysis
clusters = search.cluster_skills(n_clusters=5)

Quick Example

{
  "decomposition": {
    "actions": [
      {
        "id": "a_001",
        "name": "Read PDF",
        "action_type": "io_read",
        "deterministic": true
      }
    ],
    "rules": [
      {
        "id": "r_001",
        "name": "Check File Exists",
        "condition_type": "existence_check",
        "returns": "boolean"
      }
    ],
    "directives": [
      {
        "id": "d_001",
        "name": "PDF Processing Complete",
        "directive_type": "completion",
        "description": "All tables extracted and saved to Excel",
        "decomposable": true
      }
    ]
  }
}

Statistics (32 Skills)

Metric Count
Skills 32
Actions 266
Rules 84
Directives 120
Action Type Coverage 100%
Directive Type Coverage 100%

Cluster Distribution

Cluster Skills Description
1 10 Development Tools (MCP, Testing)
2 5 Document Processing (PDF, DOCX)
3 7 Creative Design (Canvas, Theme)
4 2 Data Analysis (Excel, Raffle)
5 8 Research Assistant (Leads, Resume)

Performance

Metric Value
Index Time 0.88s (32 skills)
Search Latency ~75ms
Embedding Dimension 384
Database SQLite-vec

Documentation

Comprehensive documentation is available:

Agent-Lightning Inspired Enhancements ⚡

Skill-0 now includes architectural patterns inspired by Microsoft's Agent-Lightning project:

  • agent-lightning-comparison.md - Comprehensive technical comparison between the two projects
  • agent-lightning-enhancements.md - Usage guide for new distributed features
  • Coordination Layer - Central hub for distributed task management (like LightningStore)
  • Parser Abstraction - Unified interface for different parsing strategies (like Algorithm abstraction)
  • Worker Pool - Parallel execution of skill processing tasks (like Runners)

Quick Example - Distributed Parsing:

from src.coordination import SkillStore, SkillWorker
from src.parsers import AdvancedSkillParser

# Initialize coordination store
store = SkillStore(db_path="db/coordination.db")

# Enqueue tasks
for skill_path in skill_files:
    await store.enqueue_parse_task(skill_path)

# Create worker pool (4 parallel workers)
parser = AdvancedSkillParser()
workers = [SkillWorker(f"worker-{i}", store, parser) for i in range(4)]

# Process in parallel - 4x speedup!
await asyncio.gather(*[w.run() for w in workers])

See examples/distributed_parsing.py for a complete working example.

Quick Start Guide

# Generate a new skill template
python src/tools/helper.py template -o my-skill.json

# Convert markdown to skill JSON
python src/tools/helper.py convert skill.md my-skill.json

# Validate skill against schema
python src/tools/helper.py validate my-skill.json

# Test execution paths
python src/tools/helper.py test my-skill.json --analyze

See docs/helper-test-results.md for detailed test results and examples.

Version

  • Schema Version: 2.2.0
  • Project Version: 2.5.0
  • Created: 2026-01-23
  • Updated: 2026-02-02
  • Author: pingqLIN

Changelog

v2.5.0 (2026-02-02) - Agent-Lightning Inspired Enhancements ⚡

  • New Feature: Distributed skill processing architecture inspired by Microsoft Agent-Lightning
  • Coordination Layer (src/coordination/): Central SkillStore hub for task management
  • Parser Abstraction (src/parsers/): Unified SkillParser interface for extensibility
  • Worker Pool: Parallel execution with SkillWorker for 4x speedup
  • Technical Comparison: 17KB comprehensive analysis document comparing Agent-Lightning and Skill-0 architectures
  • Documentation: Usage guide and working examples for distributed parsing
  • Test Suite: 9 comprehensive tests validating all new components (100% passing)
  • Performance: 4x faster parallel processing with 4 workers
  • Scalability: Foundation for distributed, horizontal scaling

v2.4.0 (2026-01-30) - GitHub Skills Discovery & Resource Dependencies

  • Schema Update: v2.1.0 → v2.2.0
  • Added resource_dependency definition type with 8 resource categories
  • Resources can be defined at meta (global) and action levels
  • Support for database, API, filesystem, GPU, memory, credentials, network, environment
  • Includes specification details, fallback strategies, and required flags
  • GitHub Skills Search: Discovered 75+ repositories aligning with skill-0 goals
  • Top 30 projects documented (MCP servers, Claude skills, AI frameworks)
  • MCP ecosystem: 4,509 repositories found
  • Top repository: awesome-mcp-servers (79,994 ⭐)
  • License analysis and compatibility verification
  • New Documentation:
  • docs/github-skills-search-report.md - Comprehensive search report
  • docs/github-skills-search-results.json - Structured project data
  • examples/database-query-analyzer-with-resources.json - Resource example
  • tools/github_skill_search.py - GitHub search utility

v2.3.0 (2026-01-28) - Testing & Quality Assurance

  • New Feature: Comprehensive automated test suite
  • 32 tests covering all helper utilities
  • Tool equivalence verification (validator consistency)
  • Code equivalence verification (converter determinism)
  • Integration workflow testing
  • Error handling and edge case coverage
  • Test fixtures and documentation in tests/
  • pytest configuration in pyproject.toml
  • CI/CD ready test infrastructure

v2.2.0 (2026-01-28) - Documentation & Tooling

  • New Feature: Comprehensive documentation suite
  • CLAUDE.md - Claude best practices guide
  • SKILL.md - Complete tool portal and workflow
  • reference.md - Full schema reference
  • examples.md - 7 detailed skill examples
  • AGENTS.md - AI agent guidelines
  • New Tool: scripts/helper.py - Utility for validation, conversion, and testing
  • Template generation
  • Markdown to JSON conversion
  • Schema validation
  • Execution path testing
  • Complexity analysis
  • Integration with agents.md format standard
  • Test results documentation in docs/helper-test-results.md

v2.1.0 (2026-01-26) - Stage 2

  • New Feature: Semantic search with vector embeddings
  • vector_db module with SQLite-vec integration
  • all-MiniLM-L6-v2 embedding model (384 dimensions)
  • K-Means clustering for skill grouping
  • CLI tool: python -m vector_db.search
  • Expanded to 32 skills (+21 from awesome-claude-skills)
  • Performance: 0.88s indexing, ~75ms search

v2.0.0 (2026-01-26)

  • Breaking Change: Redefined ternary classification
  • core_actionaction (ID: ca_XXXa_XXX)
  • missiondirective (ID: m_XXXd_XXX)
  • Added directive_type support: completion, knowledge, principle, constraint, preference, strategy
  • Added decomposable and decomposition_hint fields
  • Added action_type: await_input
  • Schema structure optimization
  • Added 19 new skills from ComposioHQ/awesome-claude-skills

v1.1.0 (2026-01-23)

  • Initial version

Hue-Sync: LG OLED TV Smart Lighting Sync Application

Note: The LG OLED TV Hue Sync project documentation has been moved to a separate repository for better organization.

📦 Files Moved: 3 documentation files (~66.5KB) related to developing a Philips Hue Sync-like smart lighting application for LG OLED TVs.

📚 Transfer Documentation: See docs/TRANSFER_TO_HUE_SYNC_REPO.md for:
- Complete file list and metadata
- Step-by-step transfer instructions (bilingual)
- Recommended repository structure
- Sample README content

🚀 Quick Reference: docs/QUICK_REFERENCE_HUE_SYNC_TRANSFER.md

Status: Documentation complete, ready for manual repository creation and file transfer.


License

MIT

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.