Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add proffesor-for-testing/agentic-qe --skill "QE Learning Optimization"
Install specific skill from multi-skill repository
# Description
Transfer learning, metrics optimization, and continuous improvement for AI-powered QE agents.
# SKILL.md
name: "QE Learning Optimization"
description: "Transfer learning, metrics optimization, and continuous improvement for AI-powered QE agents."
QE Learning Optimization
Purpose
Guide the use of v3's learning optimization capabilities including transfer learning between agents, hyperparameter tuning, A/B testing, and continuous performance improvement.
Activation
- When optimizing agent performance
- When transferring knowledge between agents
- When tuning learning parameters
- When running A/B tests
- When analyzing learning metrics
Quick Start
# Transfer knowledge between agents
aqe learn transfer --from jest-generator --to vitest-generator
# Tune hyperparameters
aqe learn tune --agent defect-predictor --metric accuracy
# Run A/B test
aqe learn ab-test --hypothesis "new-algorithm" --duration 7d
# View learning metrics
aqe learn metrics --agent test-generator --period 30d
Agent Workflow
// Transfer learning
Task("Transfer test patterns", `
Transfer learned patterns from Jest test generator to Vitest:
- Map framework-specific syntax
- Adapt assertion styles
- Preserve test structure patterns
- Validate transfer accuracy
`, "qe-transfer-specialist")
// Metrics optimization
Task("Optimize prediction accuracy", `
Tune defect-predictor agent:
- Analyze current performance metrics
- Run Bayesian hyperparameter search
- Validate improvements on holdout set
- Deploy if accuracy improves >5%
`, "qe-metrics-optimizer")
Learning Operations
1. Transfer Learning
await transferSpecialist.transfer({
source: {
agent: 'qe-jest-generator',
knowledge: ['patterns', 'heuristics', 'optimizations']
},
target: {
agent: 'qe-vitest-generator',
adaptations: ['framework-syntax', 'api-differences']
},
strategy: 'fine-tuning',
validation: {
testSet: 'validation-samples',
minAccuracy: 0.9
}
});
2. Hyperparameter Tuning
await metricsOptimizer.tune({
agent: 'defect-predictor',
parameters: {
learningRate: { min: 0.001, max: 0.1, type: 'log' },
batchSize: { values: [16, 32, 64, 128] },
patternThreshold: { min: 0.5, max: 0.95 }
},
optimization: {
method: 'bayesian',
objective: 'accuracy',
trials: 50,
parallelism: 4
}
});
3. A/B Testing
await metricsOptimizer.abTest({
hypothesis: 'ML pattern matching improves test quality',
variants: {
control: { algorithm: 'rule-based' },
treatment: { algorithm: 'ml-enhanced' }
},
metrics: ['test-quality-score', 'generation-time'],
traffic: {
split: 50,
minSampleSize: 1000
},
duration: '7d',
significance: 0.05
});
4. Feedback Loop
await metricsOptimizer.feedbackLoop({
agent: 'test-generator',
feedback: {
sources: ['user-corrections', 'test-results', 'code-reviews'],
aggregation: 'weighted',
frequency: 'real-time'
},
learning: {
strategy: 'incremental',
validationSplit: 0.2,
earlyStoppingPatience: 5
}
});
Learning Metrics Dashboard
interface LearningDashboard {
agent: string;
period: DateRange;
performance: {
current: MetricValues;
trend: 'improving' | 'stable' | 'declining';
percentile: number;
};
learning: {
samplesProcessed: number;
patternsLearned: number;
improvementRate: number;
};
experiments: {
active: Experiment[];
completed: ExperimentResult[];
};
recommendations: {
action: string;
expectedImpact: number;
confidence: number;
}[];
}
Cross-Framework Transfer
transfer_mappings:
jest_to_vitest:
syntax:
"describe": "describe"
"it": "it"
"expect": "expect"
"jest.mock": "vi.mock"
"jest.fn": "vi.fn"
patterns:
- mock-module
- async-testing
- snapshot-testing
mocha_to_jest:
syntax:
"describe": "describe"
"it": "it"
"chai.expect": "expect"
"sinon.stub": "jest.fn"
adaptations:
- assertion-style
- hook-naming
Continuous Improvement
await learningOptimizer.continuousImprovement({
agents: ['test-generator', 'coverage-analyzer', 'defect-predictor'],
schedule: {
metricCollection: 'hourly',
tuning: 'weekly',
majorUpdates: 'monthly'
},
thresholds: {
degradationAlert: 5, // percent
improvementTarget: 2, // percent per week
},
automation: {
autoTune: true,
autoRollback: true,
requireApproval: ['major-changes']
}
});
Pattern Learning
await patternLearner.learn({
sources: {
codeExamples: 'examples/**/*.ts',
testExamples: 'tests/**/*.test.ts',
userFeedback: 'feedback/*.json'
},
extraction: {
syntacticPatterns: true,
semanticPatterns: true,
contextualPatterns: true
},
storage: {
vectorDB: 'agentdb',
versioning: true
}
});
Coordination
Primary Agents: qe-transfer-specialist, qe-metrics-optimizer, qe-pattern-learner
Coordinator: qe-learning-coordinator
Related Skills: qe-test-generation, qe-defect-intelligence
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.