Use when adding new error messages to React, or seeing "unknown error code" warnings.
npx skills add randoneering/randoneering-agent-guide --skill "python-workflow"
Install specific skill from multi-skill repository
# Description
Python project workflow guidelines. Triggers: .py, pyproject.toml, uv, pip, pytest, Python. Covers package management, virtual environments, code style, type safety, testing, configuration, CQRS patterns, and Python-specific development tasks.
# SKILL.md
name: python-workflow
description: "Python project workflow guidelines. Triggers: .py, pyproject.toml, uv, pip, pytest, Python. Covers package management, virtual environments, code style, type safety, testing, configuration, CQRS patterns, and Python-specific development tasks."
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.
Python Projects Workflow
Guidelines for working with Python projects across different package managers, code styles, and architectural patterns using modern tooling (uv, Python 3.9+).
Tool Grid
| Task | Tool | Command |
|---|---|---|
| Lint | Ruff | uv run ruff check . --fix |
| Format | Ruff | uv run ruff format . |
| Type check | Mypy | uv run mypy src/ |
| Type check | Pyright | uv run pyright |
| Security | Bandit | uv run bandit -r src/ |
| Dead code | Vulture | uv run vulture src/ |
| Coverage | pytest-cov | uv run pytest --cov=src |
| Complexity | Radon | uv run radon cc src/ -a |
CRITICAL: Virtual Environment Best Practices
MUST NOT reference .venv paths manually (e.g., .venv/Scripts/python.exe or ../../../.venv/) - causes cross-platform issues and breaks on structure changes.
MUST use uv run python in uv-based projects (auto-finds venv, works cross-platform, no activation needed):
# BAD: ../../../.venv/Scripts/python.exe script.py
# GOOD: uv run python script.py
uv run python -m module.cli
Prefer shared root .venv unless isolation required (saves ~7GB per environment).
Tooling and Package Management
UV Package Manager (Preferred)
- Use
uvexclusively for modern Python projects - Installation commands:
- Production:
uv add <package> - Development:
uv add --dev <package> - Optional groups:
uv add --group <group-name> <package>(e.g., notebook, docs) - Execution:
uv run python script.pyoruv run pytest - MUST NOT call python/pytest directly - MUST use
uv run - MUST use
uv run pythonin uv-based projects - Run
uv syncbefore executing code in new projects
Alternative: Traditional Tools
- If not using uv, use pip with requirements files
- Maintain
requirements.txtandrequirements-dev.txt - Use virtual environments (
.venv) and activate before operations
General Package Management
- Respect the project's chosen package manager (uv, pip, poetry, pipenv)
- Check
pyproject.tomlfor project configuration - MUST NOT mix package managers in the same project
Python Module CLI Syntax
Use -m flag when running modules as CLIs (tells Python to run module as script, not file):
# GOOD: uv run python -m module.cli
# BAD: uv run python module.cli # fails - treats as file path
Code Style and Formatting
PEP 8 Compliance
- Follow PEP 8 style guide
- Line length: 88 characters (Ruff/Black standard)
- Indentation: 4 spaces per level
- Two blank lines before top-level function/class definitions
- One blank line between methods in a class
Automated Formatters
- Ruff - Primary tool for linting AND formatting (replaces Black, isort, flake8)
- Linting:
uv run ruff check . --fix - Formatting:
uv run ruff format . - Configure in
pyproject.tomlunder[tool.ruff] - Use
ruff.tomlfor standalone configuration
Style Guidelines
- Follow project's existing style (check
pyproject.toml,.editorconfig) - Default to PEP 8 if no project style defined
- Use type hints when writing new Python code
- Prefer f-strings over
.format()or%formatting
Configuration Files
Check these files for style preferences:
- pyproject.toml - Modern Python project configuration
- ruff.toml - Ruff-specific configuration
- .editorconfig - Editor-agnostic style settings
Example Formatting
from typing import Any
import pandas as pd
from pydantic import BaseModel
# Example data model with proper spacing
class DataModel(BaseModel):
field_one: str
field_two: int
# Process input data and return DataFrame
# Args: input_data - List of dictionaries containing raw data
# Returns: Processed pandas DataFrame
def process_data(input_data: list[dict[str, Any]]) -> pd.DataFrame:
return pd.DataFrame(input_data)
Type Safety and Annotations
Type Hints
- Strong type hints for all parameters and return values
- Use modern generic types:
list[str],dict[str, Any](Python 3.9+) - For older Python:
from typing import List, Dict - Use
typingmodule for complex types:Union,Optional,Literal,Protocol
Data Validation
- Use Pydantic for data validation and serialization
- Use
dataclassesfor simple data containers when Pydantic is overkill - Use
attrsfor enhanced dataclasses if preferred
Example Type Usage
from typing import Any, Protocol
from pydantic import BaseModel
# Protocol defining repository interface
class Repository(Protocol):
def get(self, id: str) -> dict[str, Any] | None:
...
# User model with validation
class User(BaseModel):
username: str
email: str
age: int | None = None
# Fetch user from repository with type safety
def fetch_user(repo: Repository, user_id: str) -> User | None:
data = repo.get(user_id)
return User(**data) if data else None
Naming Conventions
Standard Conventions
- Class names: PascalCase (
UserService,DatabaseConnection) - Function/variable names: snake_case (
get_user_data,connection_pool) - Constants: UPPER_SNAKE_CASE (
MAX_RETRIES,DEFAULT_TIMEOUT) - Private methods/variables: Leading underscore (
_internal_method,_cache)
Critical: Avoid Test Name Conflicts
- MUST NOT name classes with "Test" prefix unless they are actual pytest test classes
- Use descriptive names:
MockComponent,HelperClass,UtilityFunctioninstead ofTestComponent - Pytest collects classes starting with "Test" as test classes, causing confusion
File Naming
- Python files SHOULD be snake_case version of the primary class
- Examples:
DNSRecordHandler→dns_record_handler.pyComponentFactory→component_factory.py- For modules with multiple classes or functional code, name for the module's purpose
Documentation and Comments
Comment Style
- MUST use single-line
#comments instead of multi-line""" """strings - Keep comments concise and to the point
- Place comments on the line above the code they describe
- Use inline comments sparingly for brief clarifications
Comment Philosophy
- Comment to explain WHY, not WHAT
- Prefer clear names and structure over comments
- Use comments for complex business logic, algorithms, and non-obvious decisions
- Avoid obvious, redundant, or outdated comments
Example Documentation
# Calculate compound interest using the standard formula
# Args:
# principal: Initial amount invested
# rate: Annual interest rate as decimal (e.g., 0.05 for 5%)
# time: Time period in years
# compound_frequency: Times per year interest compounds (default: 1)
# Returns: Final amount after compound interest
# Raises: ValueError if principal, rate, or time is negative
def calculate_compound_interest(
principal: float,
rate: float,
time: int,
compound_frequency: int = 1
) -> float:
if principal < 0 or rate < 0 or time < 0:
raise ValueError("Values must be non-negative")
# Using compound interest formula: A = P(1 + r/n)^(nt)
return principal * (1 + rate / compound_frequency) ** (compound_frequency * time)
Error Handling
Exception Best Practices
- Use specific exception types (ValueError, KeyError) over generic Exception
- Provide meaningful error messages that help debugging
- Use Python's
loggingmodule with structured logging - Handle edge cases explicitly (empty inputs, None values, invalid types)
- CRITICAL: MUST NOT remove public methods for lint fixes - preserve API stability
Example Error Handling
import logging
logger = logging.getLogger(__name__)
# Process user data with proper error handling
# Args: user_id - Unique user identifier
# Returns: Processed user data dictionary
# Raises:
# ValueError: If user_id is empty or invalid format
# UserNotFoundError: If user doesn't exist
def process_user_data(user_id: str) -> dict[str, Any]:
if not user_id or not user_id.strip():
raise ValueError("user_id cannot be empty")
try:
user = fetch_user(user_id)
if user is None:
raise UserNotFoundError(f"User {user_id} not found")
return process(user)
except DatabaseError as e:
logger.error(f"Database error processing user {user_id}: {e}")
raise
Project Structure
Package Organization
- Include
__init__.pyin all packages - Use
__init__.pyto control package exports - Structure DTOs and handlers logically
- Separate concerns: models, services, repositories, controllers
Recommended Directory Structure
project/
├── src/
│ └── app/
│ ├── __init__.py # Export main app components
│ ├── core/ # Core business logic
│ │ ├── __init__.py
│ │ ├── commands.py # Command DTOs
│ │ └── queries.py # Query DTOs
│ ├── services/ # Business services
│ │ ├── __init__.py
│ │ └── user_service.py
│ ├── repositories/ # Data access
│ │ ├── __init__.py
│ │ └── user_repository.py
│ ├── models/ # Data models
│ │ ├── __init__.py
│ │ └── user.py
│ └── handlers/ # Request handlers
│ ├── __init__.py
│ └── user_handler.py
├── tests/ # Test files
│ ├── __init__.py
│ ├── unit/
│ ├── integration/
│ └── fixtures/
├── pyproject.toml # Project configuration
└── README.md
Import Patterns
- Use relative imports within packages:
from .models import User - Use absolute imports from other packages:
from app.services import UserService - Avoid circular imports through careful module organization
Script Organization
Structure Order for Standalone Scripts
Organize standalone Python scripts in the following order:
- Imports - All import statements at the top
- Hard-coded variables and constants - Configuration values, static data
- Dictionaries and data structures - Lookup tables, mappings
- Class definitions - Any classes needed for the script
- Functions - Organized in the order they're called in
main() - Main execution block -
if __name__ == "__main__":withmain()function
Example Script Structure
import os
from pathlib import Path
from typing import Any
# Hard-coded variables
API_ENDPOINT = "https://api.example.com"
MAX_RETRIES = 3
TIMEOUT_SECONDS = 30
# Data structures
STATUS_CODES = {
200: "success",
404: "not_found",
500: "server_error"
}
# Classes
class DataProcessor:
# Process data for the script
def __init__(self, config: dict[str, Any]):
self.config = config
def process(self, data: list[dict]) -> list[dict]:
# Transform input data
return [self._transform(item) for item in data]
def _transform(self, item: dict) -> dict:
# Apply transformations
return item
# Functions in execution order
def load_config() -> dict[str, Any]:
# Load configuration from file
config_path = Path.home() / ".config" / "app.json"
return {}
def fetch_data(endpoint: str) -> list[dict]:
# Fetch data from API
return []
def save_results(data: list[dict], output_path: Path) -> None:
# Save processed results to file
output_path.write_text(str(data))
def main() -> None:
# Main execution flow
config = load_config()
processor = DataProcessor(config)
data = fetch_data(API_ENDPOINT)
results = processor.process(data)
save_results(results, Path("output.json"))
if __name__ == "__main__":
main()
Configuration Management
Environment Variables
- Use python-dotenv for development: load from
.envfiles - Use
os.getenv()with sensible defaults - Validate configuration at startup
- MUST NOT commit
.envfiles to version control
Configuration Classes
from pydantic import BaseModel, Field
import os
# Application configuration with validation
class AppConfig(BaseModel):
debug: bool = Field(default=False)
database_url: str = Field(...)
max_connections: int = Field(default=10, ge=1, le=100)
@classmethod
# Load configuration from environment variables
def from_env(cls) -> "AppConfig":
return cls(
debug=os.getenv("DEBUG", "false").lower() == "true",
database_url=os.getenv("DATABASE_URL", ""),
max_connections=int(os.getenv("MAX_CONNECTIONS", "10"))
)
File Management
Working with File Paths
- Use
pathlib.Pathfor cross-platform path handling - Avoid hardcoded paths; use
os.path.expanduser('~/')for home directories - MUST handle file encoding explicitly (UTF-8 default)
- Properly close files or use context managers (
withstatement)
Example File Operations
from pathlib import Path
# Read file
config_path = Path.home() / '.config' / 'app.json'
if config_path.exists():
content = config_path.read_text(encoding='utf-8')
# Write file with context manager
output_path = Path('output.txt')
with output_path.open('w', encoding='utf-8') as f:
f.write('content')
Testing and Quality
Testing Strategy
- Write tests for critical paths and public APIs
- Use pytest as the primary test framework
- Organize tests:
tests/unit/,tests/integration/ - Test edge cases: empty inputs, None values, large datasets
- Use fixtures for reusable test setup
- Use
pytest.markfor test categorization - Maintain >80% code coverage for critical paths
Quality Tools
- Ruff - Linting and formatting (primary)
- pytest - Test framework
- pytest-cov - Code coverage measurement
- mypy/pyright - Static type checking
- bandit - Security scanning
Example Test with Fixtures
import pytest
from app.services import UserService
@pytest.fixture
# Provide UserService instance for tests
def user_service():
return UserService()
@pytest.fixture
# Provide sample user data
def sample_user():
return {"id": "user123", "name": "John Doe"}
# Test successful user retrieval
def test_get_user_success(user_service):
user = user_service.get_user("user123")
assert user is not None
assert user.id == "user123"
# Test user not found raises appropriate exception
def test_get_user_not_found(user_service):
with pytest.raises(UserNotFoundError):
user_service.get_user("nonexistent")
# Test user creation with fixture data
def test_create_user(user_service, sample_user):
user = user_service.create_user(sample_user)
assert user.name == "John Doe"
Special Patterns
Flask/FastAPI Applications
- Structure with
app/package using__init__.pyexports - Use blueprints/routers for route organization
- Implement health check endpoints (
/health,/status) - Use Pydantic for request/response models
- Disable debug mode in production
- Separate routes from business logic
Command/Query Patterns (CQRS)
- Separate Commands (write operations) and Queries (read operations)
- Use command/query buses for dispatch
- Define DTOs as dataclasses or Pydantic models
- Implement handlers separately from business logic
- Example structure:
core/commands.py- Command DTOscore/queries.py- Query DTOshandlers/command_handler.py- Command processinghandlers/query_handler.py- Query processing
Async/Await
- Use
async deffor I/O-bound operations - Use
awaitfor async calls - Use
asynciofor concurrent operations - Be aware of event loop management
- Example:
import asyncio
# Fetch data asynchronously
async def fetch_data(url: str) -> dict:
# Use aiohttp or similar for actual HTTP calls
await asyncio.sleep(1)
return {"status": "success"}
# Run multiple async operations concurrently
async def main():
results = await asyncio.gather(
fetch_data("url1"),
fetch_data("url2")
)
return results
Common Patterns
Project Structure Recognition
pyproject.toml- Modern Python project (PEP 518)requirements.txt- Pip dependenciessetup.py- Package definition (legacy or hybrid)Pipfile- Pipenv projectspoetry.lock- Poetry projectsuv.lock- UV projects
Testing Framework Detection
- Respect existing test framework (pytest, unittest, nose)
- Look for test configuration in
pyproject.tomlorpytest.ini - Use project's test runner:
uv run pytest,poetry run pytest, etc.
Out of Scope
- Django specifics → see
django-workflow - FastAPI specifics → see
fastapi-workflow - Flask specifics → see
flask-workflow - Database migrations → see
database-workflow
Quick Reference
Package managers:
- UV: uv run, uv sync, uv add, uv add --dev
- Poetry: poetry run, poetry install, poetry add
- Pip: pip install, python -m pip
Key rules:
- MUST use uv run python (MUST NOT use manual .venv paths)
- MUST use -m flag for module CLIs
- MUST check pyproject.toml for config
- MUST use strong type hints for all parameters/returns
- MUST separate concerns: models, services, repositories
- SHOULD use Pydantic for validation
- SHOULD use pytest with fixtures
- MUST NOT mix package managers
- MUST NOT remove public methods for lint fixes
- MUST NOT name helper classes with "Test" prefix
Note: For project-specific Python patterns, check .claude/CLAUDE.md in the project directory.
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.