Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add solatis/claude-config --skill "cc-history"
Install specific skill from multi-skill repository
# Description
Reference documentation for analyzing Claude Code conversation history files
# SKILL.md
name: cc-history
description: Reference documentation for analyzing Claude Code conversation history files
Claude Code History Analysis
Reference documentation for querying and analyzing Claude Code's conversation history. Use shell commands and jq to extract information from JSONL conversation files.
Directory Structure
~/.claude/projects/{encoded-path}/
|-- {session-uuid}.jsonl # Main conversation
|-- {session-uuid}/
|-- subagents/
| |-- agent-{hash}.jsonl # Subagent conversations
|-- tool-results/ # Large tool outputs
Project Path Resolution
Convert working directory to project directory:
PROJECT_DIR="~/.claude/projects/$(echo "$PWD" | sed 's|^/|-|; s|/\.|--|g; s|/|-|g')"
Encoding rules:
- Leading
/becomes- - Regular
/becomes- /.(hidden directory) becomes--
Examples:
/Users/bill/.claude->-Users-bill--claude/Users/bill/git/myproject->-Users-bill-git-myproject
Message Types
| Type | Description |
|---|---|
user |
User input messages |
assistant |
Model responses (thinking, tool_use, text) |
system |
System messages |
queue-operation |
Background task notifications (subagent done) |
Message Structure
Each line in a JSONL file is a message object:
{
"type": "assistant",
"uuid": "abc123",
"parentUuid": "xyz789",
"timestamp": "2025-01-15T19:39:16.000Z",
"sessionId": "session-uuid",
"message": {
"role": "assistant",
"content": [...],
"usage": {
"input_tokens": 20000,
"output_tokens": 500,
"cache_read_input_tokens": 15000,
"cache_creation_input_tokens": 5000
}
}
}
Assistant message content blocks:
type: "thinking"- Model thinking (hasthinkingfield)type: "tool_use"- Tool invocation (hasname,inputfields)type: "text"- Text response (hastextfield)
Common Queries
Find Conversations
# List by modification time (most recent first)
ls -lt "$PROJECT_DIR"/*.jsonl
# Find by date
ls -la "$PROJECT_DIR"/*.jsonl | grep "Jan 15"
# Find by content
grep -l "search term" "$PROJECT_DIR"/*.jsonl
Extract Messages
# Get message by line number (1-indexed)
sed -n '42p' file.jsonl | jq .
# Get message by uuid
jq -c 'select(.uuid=="abc123")' file.jsonl
# All user messages
jq -c 'select(.type=="user")' file.jsonl
# All assistant messages
jq -c 'select(.type=="assistant")' file.jsonl
Tool Call Analysis
# List all tool calls
jq -c 'select(.type=="assistant") | .message.content[]? | select(.type=="tool_use") | {name, input}' file.jsonl
# Count tool calls by name
jq -c 'select(.type=="assistant") | .message.content[]? | select(.type=="tool_use") | .name' file.jsonl | sort | uniq -c | sort -rn
# Find specific tool calls
jq -c 'select(.type=="assistant") | .message.content[]? | select(.type=="tool_use" and .name=="Bash")' file.jsonl
Skill Invocation Detection
Pattern: python3 -m skills\.([a-z_]+)\.
# Find all skill invocations
grep -oE "python3 -m skills\.[a-z_]+" file.jsonl | sort -u
# Find conversations using a specific skill
grep -l "python3 -m skills\.planner\." "$PROJECT_DIR"/*.jsonl
Token Usage
# Total tokens in conversation
jq -s '[.[].message.usage? | select(.) | .input_tokens + .output_tokens] | add' file.jsonl
# Token breakdown
jq -s '[.[].message.usage? | select(.)] | {
input: (map(.input_tokens) | add),
output: (map(.output_tokens) | add),
cached: (map(.cache_read_input_tokens // 0) | add)
}' file.jsonl
# Token progression over time
jq -c 'select(.type=="assistant") | {ts: .timestamp[11:19], inp: .message.usage.input_tokens, out: .message.usage.output_tokens}' file.jsonl
Taxonomy Aggregation
# Count messages by type
jq -s 'group_by(.type) | map({type: .[0].type, count: length})' file.jsonl
# Character count in user messages
jq -s '[.[] | select(.type=="user") | .message.content | length] | add' file.jsonl
# Thinking block character count
jq -s '[.[] | select(.type=="assistant") | .message.content[]? | select(.type=="thinking") | .thinking | length] | add' file.jsonl
Subagent Analysis
# List subagents for a session
ls "${SESSION_DIR}/subagents/"
# Get subagent task description (first user message)
jq -c 'select(.type=="user") | .message.content' agent-*.jsonl | head -1
# Find Task tool calls in parent (these spawn subagents)
jq -c 'select(.type=="assistant") | .message.content[]? | select(.type=="tool_use" and .name=="Task") | .input' file.jsonl
Correlation
Subagent files (agent-{hash}.jsonl) don't link directly to parent Task calls. To correlate:
- List all subagent files under
{session}/subagents/ - Read first user message of each for task description
- Match description to Task tool_use blocks in parent conversation
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.