solatis

cc-history

557
95
# Install this skill:
npx skills add solatis/claude-config --skill "cc-history"

Install specific skill from multi-skill repository

# Description

Reference documentation for analyzing Claude Code conversation history files

# SKILL.md


name: cc-history
description: Reference documentation for analyzing Claude Code conversation history files


Claude Code History Analysis

Reference documentation for querying and analyzing Claude Code's conversation history. Use shell commands and jq to extract information from JSONL conversation files.

Directory Structure

~/.claude/projects/{encoded-path}/
  |-- {session-uuid}.jsonl          # Main conversation
  |-- {session-uuid}/
      |-- subagents/
      |   |-- agent-{hash}.jsonl    # Subagent conversations
      |-- tool-results/             # Large tool outputs

Project Path Resolution

Convert working directory to project directory:

PROJECT_DIR="~/.claude/projects/$(echo "$PWD" | sed 's|^/|-|; s|/\.|--|g; s|/|-|g')"

Encoding rules:

  • Leading / becomes -
  • Regular / becomes -
  • /. (hidden directory) becomes --

Examples:

  • /Users/bill/.claude -> -Users-bill--claude
  • /Users/bill/git/myproject -> -Users-bill-git-myproject

Message Types

Type Description
user User input messages
assistant Model responses (thinking, tool_use, text)
system System messages
queue-operation Background task notifications (subagent done)

Message Structure

Each line in a JSONL file is a message object:

{
  "type": "assistant",
  "uuid": "abc123",
  "parentUuid": "xyz789",
  "timestamp": "2025-01-15T19:39:16.000Z",
  "sessionId": "session-uuid",
  "message": {
    "role": "assistant",
    "content": [...],
    "usage": {
      "input_tokens": 20000,
      "output_tokens": 500,
      "cache_read_input_tokens": 15000,
      "cache_creation_input_tokens": 5000
    }
  }
}

Assistant message content blocks:

  • type: "thinking" - Model thinking (has thinking field)
  • type: "tool_use" - Tool invocation (has name, input fields)
  • type: "text" - Text response (has text field)

Common Queries

Find Conversations

# List by modification time (most recent first)
ls -lt "$PROJECT_DIR"/*.jsonl

# Find by date
ls -la "$PROJECT_DIR"/*.jsonl | grep "Jan 15"

# Find by content
grep -l "search term" "$PROJECT_DIR"/*.jsonl

Extract Messages

# Get message by line number (1-indexed)
sed -n '42p' file.jsonl | jq .

# Get message by uuid
jq -c 'select(.uuid=="abc123")' file.jsonl

# All user messages
jq -c 'select(.type=="user")' file.jsonl

# All assistant messages
jq -c 'select(.type=="assistant")' file.jsonl

Tool Call Analysis

# List all tool calls
jq -c 'select(.type=="assistant") | .message.content[]? | select(.type=="tool_use") | {name, input}' file.jsonl

# Count tool calls by name
jq -c 'select(.type=="assistant") | .message.content[]? | select(.type=="tool_use") | .name' file.jsonl | sort | uniq -c | sort -rn

# Find specific tool calls
jq -c 'select(.type=="assistant") | .message.content[]? | select(.type=="tool_use" and .name=="Bash")' file.jsonl

Skill Invocation Detection

Pattern: python3 -m skills\.([a-z_]+)\.

# Find all skill invocations
grep -oE "python3 -m skills\.[a-z_]+" file.jsonl | sort -u

# Find conversations using a specific skill
grep -l "python3 -m skills\.planner\." "$PROJECT_DIR"/*.jsonl

Token Usage

# Total tokens in conversation
jq -s '[.[].message.usage? | select(.) | .input_tokens + .output_tokens] | add' file.jsonl

# Token breakdown
jq -s '[.[].message.usage? | select(.)] | {
  input: (map(.input_tokens) | add),
  output: (map(.output_tokens) | add),
  cached: (map(.cache_read_input_tokens // 0) | add)
}' file.jsonl

# Token progression over time
jq -c 'select(.type=="assistant") | {ts: .timestamp[11:19], inp: .message.usage.input_tokens, out: .message.usage.output_tokens}' file.jsonl

Taxonomy Aggregation

# Count messages by type
jq -s 'group_by(.type) | map({type: .[0].type, count: length})' file.jsonl

# Character count in user messages
jq -s '[.[] | select(.type=="user") | .message.content | length] | add' file.jsonl

# Thinking block character count
jq -s '[.[] | select(.type=="assistant") | .message.content[]? | select(.type=="thinking") | .thinking | length] | add' file.jsonl

Subagent Analysis

# List subagents for a session
ls "${SESSION_DIR}/subagents/"

# Get subagent task description (first user message)
jq -c 'select(.type=="user") | .message.content' agent-*.jsonl | head -1

# Find Task tool calls in parent (these spawn subagents)
jq -c 'select(.type=="assistant") | .message.content[]? | select(.type=="tool_use" and .name=="Task") | .input' file.jsonl

Correlation

Subagent files (agent-{hash}.jsonl) don't link directly to parent Task calls. To correlate:

  1. List all subagent files under {session}/subagents/
  2. Read first user message of each for task description
  3. Match description to Task tool_use blocks in parent conversation

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.