Build or update the BlueBubbles external channel plugin for Moltbot (extension package, REST...
npx skills add synth-laboratories/skills --skill "synth-api"
Install specific skill from multi-skill repository
# Description
Use the Synth AI API end-to-end (SDK + HTTP) for eval + GEPA
# SKILL.md
name: synth-api
description: Use the Synth AI API end-to-end (SDK + HTTP) for eval + GEPA
Synth API (SDK + HTTP, end-to-end)
This skill explains how to run Synth end-to-end with:
- a Local API task app exposed via Cloudflare tunnel
- GEPA prompt optimization
- Eval jobs on held-out seeds
Reference demo: demos/gepa_banking77/gepa_banking77_prompt_optimization.ipynb
Required env
SYNTH_API_KEY: your API key (or mint a demo key if using a demo workflow)SYNTH_BACKEND_URL(optional): backend base URL, defaulthttps://api.usesynth.ai
Auth + API keys
Synth uses two keys:
SYNTH_API_KEYauthenticates your SDK/CLI calls to the Synth backend.ENVIRONMENT_API_KEYauthenticates backend-to-task-app requests (sent asX-API-KeyorAuthorization: Bearer ...).
Mint a demo Synth API key (optional)
Demo keys are short‑lived (default 4 hours) and are great for notebooks or quick starts.
import os
from synth_ai.core.utils.env import mint_demo_api_key
SYNTH_API_BASE = os.environ.get("SYNTH_BACKEND_URL", "https://api.usesynth.ai")
SYNTH_API_KEY = os.environ.get("SYNTH_API_KEY") or mint_demo_api_key(SYNTH_API_BASE)
os.environ["SYNTH_API_KEY"] = SYNTH_API_KEY
Mint + upload an Environment API key
Your task app should use the same ENVIRONMENT_API_KEY that the backend stores for your org.
The helper below generates a key locally and uploads it to the backend using your SYNTH_API_KEY.
import os
from synth_ai.sdk.localapi.auth import mint_environment_api_key, setup_environment_api_key
SYNTH_API_BASE = os.environ.get("SYNTH_BACKEND_URL", "https://api.usesynth.ai")
SYNTH_API_KEY = os.environ["SYNTH_API_KEY"]
ENVIRONMENT_API_KEY = mint_environment_api_key()
os.environ["ENVIRONMENT_API_KEY"] = ENVIRONMENT_API_KEY
setup_environment_api_key(SYNTH_API_BASE, SYNTH_API_KEY, token=ENVIRONMENT_API_KEY)
Core concepts
- Local API: Your task app runs locally and exposes
/rollout+/task_info. - Tunnel: Cloudflare Quick Tunnel makes the local app reachable by Synth.
- GEPA: Prompt optimizer that mutates prompts to maximize reward.
- Eval jobs: Formal evaluation on held‑out seeds after optimization.
Quick SDK health check
import os
import asyncio
from synth_ai.sdk.jobs import JobsClient
async def main() -> None:
async with JobsClient(
base_url=os.environ.get("SYNTH_BACKEND_URL", "https://api.usesynth.ai"),
api_key=os.environ["SYNTH_API_KEY"],
) as client:
files = await client.files.list(limit=5)
print(files)
if __name__ == "__main__":
asyncio.run(main())
1) Define a Local API task app
Minimum Local API shape:
- provide_taskset_description()
- provide_task_instances(seeds)
- rollout(request) -> RolloutResponse
from synth_ai.sdk.localapi import LocalAPIConfig, create_local_api
from synth_ai.sdk.localapi._impl.contracts import RolloutMetrics, RolloutRequest, RolloutResponse, TaskInfo
def create_banking77_local_api(system_prompt: str):
async def run_rollout(request: RolloutRequest, fastapi_request) -> RolloutResponse:
# Use your own task logic here; return a reward in [0, 1].
reward = 1.0
return RolloutResponse(
trace_correlation_id=request.trace_correlation_id,
reward_info=RolloutMetrics(outcome_reward=reward),
trace=None,
)
def provide_taskset_description():
return {"splits": ["train", "test"], "sizes": {"train": 1000, "test": 1000}}
def provide_task_instances(seeds):
for seed in seeds:
yield TaskInfo(
task={"id": "banking77", "name": "Banking77 Intent Classification"},
dataset={"id": "banking77", "split": "train", "index": seed},
inference={"tool": "banking77_classify"},
limits={"max_turns": 1},
task_metadata={"seed": seed},
)
return create_local_api(
LocalAPIConfig(
app_id="banking77",
name="Banking77 Intent Classification",
description="Classify customer queries into intents.",
provide_taskset_description=provide_taskset_description,
provide_task_instances=provide_task_instances,
rollout=run_rollout,
cors_origins=["*"],
)
)
2) Expose the Local API with a Cloudflare tunnel
Use the built‑in tunnel helper to auto‑start the server and provision a URL.
The helper spins up your local server, creates a public trycloudflare.com URL,
and forwards requests from the public URL to your local port. Keep the process
running while Synth calls your task app.
from synth_ai.core.tunnels import TunnelBackend, TunneledLocalAPI
app = create_banking77_local_api("baseline prompt")
baseline_tunnel = await TunneledLocalAPI.create_for_app(
app=app,
local_port=None, # auto-select
backend=TunnelBackend.CloudflareQuickTunnel,
progress=True,
)
LOCAL_API_URL = baseline_tunnel.url
print("Local API URL:", LOCAL_API_URL)
3) Run GEPA (prompt optimization)
GEPA mutates prompt candidates and evaluates them via rollouts. Use a GEPA config body
or a config file. Example config body:
from synth_ai.sdk.optimization.internal.prompt_learning import PromptLearningJob
config_body = {
"prompt_learning": {
"algorithm": "gepa",
"task_app_url": LOCAL_API_URL,
"env_name": "banking77",
"initial_prompt": {
"messages": [
{"role": "system", "order": 0, "pattern": "Baseline system prompt"},
{"role": "user", "order": 1, "pattern": "Customer Query: {query}\n\nAvailable Intents:\n{available_intents}"},
],
"wildcards": {"query": "REQUIRED", "available_intents": "OPTIONAL"},
},
"policy": {
"model": "gpt-4.1-nano",
"provider": "openai",
"inference_mode": "synth_hosted",
"temperature": 0.0,
"max_completion_tokens": 256,
},
"gepa": {
"env_name": "banking77",
"evaluation": {
"seeds": list(range(50)),
"validation_seeds": list(range(50, 60)),
},
"rollout": {"budget": 80, "max_concurrent": 8, "minibatch_size": 8},
"mutation": {"rate": 0.3},
"population": {"initial_size": 4, "num_generations": 3, "children_per_generation": 3},
"archive": {"size": 5, "pareto_set_size": 10},
},
},
}
job = PromptLearningJob.from_dict(config_dict=config_body, skip_health_check=True)
job_id = job.submit()
result = job.poll_until_complete(timeout=3600.0, interval=3.0, progress=True)
print(result.status.value)
4) Run Eval jobs (held‑out seeds)
Eval jobs score a fixed set of held‑out seeds for a final report once optimization
finishes.
from synth_ai.sdk.eval.job import EvalJob, EvalJobConfig
config = EvalJobConfig(
local_api_url=LOCAL_API_URL,
backend_url=os.environ.get("SYNTH_BACKEND_URL", "https://api.usesynth.ai"),
api_key=os.environ["SYNTH_API_KEY"],
env_name="banking77",
seeds=list(range(100, 150)),
policy_config={"model": "gpt-4.1-nano", "provider": "openai"},
env_config={"split": "test"},
concurrency=10,
)
job = EvalJob(config)
job.submit()
result = job.poll_until_complete(timeout=600.0, interval=2.0, progress=True)
print(result.status)
5) Retrieve optimized prompts
from synth_ai.sdk.optimization.internal.learning.prompt_learning_client import PromptLearningClient
client = PromptLearningClient()
prompt_results = await client.get_prompts(job_id)
best_score = prompt_results.best_score
print("Best score:", best_score)
HTTP example (raw)
import os
import requests
base = os.environ.get("SYNTH_BACKEND_URL", "https://api.usesynth.ai")
resp = requests.get(
f"{base}/api/health",
headers={"Authorization": f"Bearer {os.environ['SYNTH_API_KEY']}"},
timeout=30,
)
resp.raise_for_status()
print(resp.json())
Troubleshooting checklist
- Cloudflare tunnel: Make sure
TunneledLocalAPIreturns a reachable URL; expect atrycloudflare.comURL. - Inference URL: If using hosted inference, your model requests should point to
https://api.usesynth.ai/api/inference/v1. - Auth: Confirm
SYNTH_API_KEYis set and valid. - Task app shape: Ensure
/task_infoand/rolloutreturn validRolloutResponse. - Polling errors: If a poll fails, re‑query
/api/prompt-learning/online/jobs/{job_id}to confirm job status.
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.