Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add xu-xiang/everything-claude-code-zh --skill "clickhouse-io"
Install specific skill from multi-skill repository
# Description
ClickHouse 数据库模式、查询优化、分析以及针对高性能分析工作负载的数据工程最佳实践。
# SKILL.md
name: clickhouse-io
description: ClickHouse 数据库模式、查询优化、分析以及针对高性能分析工作负载的数据工程最佳实践。
ClickHouse 分析模式
针对高性能分析和数据工程的 ClickHouse 特定模式。
概览
ClickHouse 是一款用于联机分析处理(OLAP)的列式数据库管理系统(DBMS)。它针对大规模数据集上的快速分析查询进行了优化。
核心特性:
- 列式存储
- 数据压缩
- 并行查询执行
- 分布式查询
- 实时分析
表设计模式
MergeTree 引擎(最常用)
CREATE TABLE markets_analytics (
date Date,
market_id String,
market_name String,
volume UInt64,
trades UInt32,
unique_traders UInt32,
avg_trade_size Float64,
created_at DateTime
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(date)
ORDER BY (date, market_id)
SETTINGS index_granularity = 8192;
ReplacingMergeTree(去重)
-- 针对可能存在重复的数据(例如来自多个源)
CREATE TABLE user_events (
event_id String,
user_id String,
event_type String,
timestamp DateTime,
properties String
) ENGINE = ReplacingMergeTree()
PARTITION BY toYYYYMM(timestamp)
ORDER BY (user_id, event_id, timestamp)
PRIMARY KEY (user_id, event_id);
AggregatingMergeTree(预聚合)
-- 用于维护聚合指标
CREATE TABLE market_stats_hourly (
hour DateTime,
market_id String,
total_volume AggregateFunction(sum, UInt64),
total_trades AggregateFunction(count, UInt32),
unique_users AggregateFunction(uniq, String)
) ENGINE = AggregatingMergeTree()
PARTITION BY toYYYYMM(hour)
ORDER BY (hour, market_id);
-- 查询聚合数据
SELECT
hour,
market_id,
sumMerge(total_volume) AS volume,
countMerge(total_trades) AS trades,
uniqMerge(unique_users) AS users
FROM market_stats_hourly
WHERE hour >= toStartOfHour(now() - INTERVAL 24 HOUR)
GROUP BY hour, market_id
ORDER BY hour DESC;
查询优化模式
高效过滤
-- ✅ 推荐:优先使用索引列
SELECT *
FROM markets_analytics
WHERE date >= '2025-01-01'
AND market_id = 'market-123'
AND volume > 1000
ORDER BY date DESC
LIMIT 100;
-- ❌ 不推荐:优先过滤非索引列
SELECT *
FROM markets_analytics
WHERE volume > 1000
AND market_name LIKE '%election%'
AND date >= '2025-01-01';
聚合
-- ✅ 推荐:使用 ClickHouse 特有的聚合函数
SELECT
toStartOfDay(created_at) AS day,
market_id,
sum(volume) AS total_volume,
count() AS total_trades,
uniq(trader_id) AS unique_traders,
avg(trade_size) AS avg_size
FROM trades
WHERE created_at >= today() - INTERVAL 7 DAY
GROUP BY day, market_id
ORDER BY day DESC, total_volume DESC;
-- ✅ 使用 quantile 计算分位数(比 percentile 更高效)
SELECT
quantile(0.50)(trade_size) AS median,
quantile(0.95)(trade_size) AS p95,
quantile(0.99)(trade_size) AS p99
FROM trades
WHERE created_at >= now() - INTERVAL 1 HOUR;
窗口函数
-- 计算累计总量
SELECT
date,
market_id,
volume,
sum(volume) OVER (
PARTITION BY market_id
ORDER BY date
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
) AS cumulative_volume
FROM markets_analytics
WHERE date >= today() - INTERVAL 30 DAY
ORDER BY market_id, date;
数据插入模式
批量插入(推荐)
import { ClickHouse } from 'clickhouse'
const clickhouse = new ClickHouse({
url: process.env.CLICKHOUSE_URL,
port: 8123,
basicAuth: {
username: process.env.CLICKHOUSE_USER,
password: process.env.CLICKHOUSE_PASSWORD
}
})
// ✅ 批量插入(高效)
async function bulkInsertTrades(trades: Trade[]) {
const values = trades.map(trade => `(
'${trade.id}',
'${trade.market_id}',
'${trade.user_id}',
${trade.amount},
'${trade.timestamp.toISOString()}'
)`).join(',')
await clickhouse.query(`
INSERT INTO trades (id, market_id, user_id, amount, timestamp)
VALUES ${values}
`).toPromise()
}
// ❌ 逐条插入(缓慢)
async function insertTrade(trade: Trade) {
// 不要循环执行此操作!
await clickhouse.query(`
INSERT INTO trades VALUES ('${trade.id}', ...)
`).toPromise()
}
流式插入
// 用于持续的数据摄取
import { createWriteStream } from 'fs'
import { pipeline } from 'stream/promises'
async function streamInserts() {
const stream = clickhouse.insert('trades').stream()
for await (const batch of dataSource) {
stream.write(batch)
}
await stream.end()
}
物化视图(Materialized Views)
实时聚合
-- 为每小时统计创建物化视图
CREATE MATERIALIZED VIEW market_stats_hourly_mv
TO market_stats_hourly
AS SELECT
toStartOfHour(timestamp) AS hour,
market_id,
sumState(amount) AS total_volume,
countState() AS total_trades,
uniqState(user_id) AS unique_users
FROM trades
GROUP BY hour, market_id;
-- 查询物化视图
SELECT
hour,
market_id,
sumMerge(total_volume) AS volume,
countMerge(total_trades) AS trades,
uniqMerge(unique_users) AS users
FROM market_stats_hourly
WHERE hour >= now() - INTERVAL 24 HOUR
GROUP BY hour, market_id;
性能监控
查询性能
-- 检查慢查询
SELECT
query_id,
user,
query,
query_duration_ms,
read_rows,
read_bytes,
memory_usage
FROM system.query_log
WHERE type = 'QueryFinish'
AND query_duration_ms > 1000
AND event_time >= now() - INTERVAL 1 HOUR
ORDER BY query_duration_ms DESC
LIMIT 10;
表统计信息
-- 检查表大小
SELECT
database,
table,
formatReadableSize(sum(bytes)) AS size,
sum(rows) AS rows,
max(modification_time) AS latest_modification
FROM system.parts
WHERE active
GROUP BY database, table
ORDER BY sum(bytes) DESC;
常用分析查询
时间序列分析
-- 日活跃用户数
SELECT
toDate(timestamp) AS date,
uniq(user_id) AS daily_active_users
FROM events
WHERE timestamp >= today() - INTERVAL 30 DAY
GROUP BY date
ORDER BY date;
-- 留存分析
SELECT
signup_date,
countIf(days_since_signup = 0) AS day_0,
countIf(days_since_signup = 1) AS day_1,
countIf(days_since_signup = 7) AS day_7,
countIf(days_since_signup = 30) AS day_30
FROM (
SELECT
user_id,
min(toDate(timestamp)) AS signup_date,
toDate(timestamp) AS activity_date,
dateDiff('day', signup_date, activity_date) AS days_since_signup
FROM events
GROUP BY user_id, activity_date
)
GROUP BY signup_date
ORDER BY signup_date DESC;
漏斗分析
-- 转化漏斗
SELECT
countIf(step = 'viewed_market') AS viewed,
countIf(step = 'clicked_trade') AS clicked,
countIf(step = 'completed_trade') AS completed,
round(clicked / viewed * 100, 2) AS view_to_click_rate,
round(completed / clicked * 100, 2) AS click_to_completion_rate
FROM (
SELECT
user_id,
session_id,
event_type AS step
FROM events
WHERE event_date = today()
)
GROUP BY session_id;
队列分析(Cohort Analysis)
-- 按注册月份划分的用户队列
SELECT
toStartOfMonth(signup_date) AS cohort,
toStartOfMonth(activity_date) AS month,
dateDiff('month', cohort, month) AS months_since_signup,
count(DISTINCT user_id) AS active_users
FROM (
SELECT
user_id,
min(toDate(timestamp)) OVER (PARTITION BY user_id) AS signup_date,
toDate(timestamp) AS activity_date
FROM events
)
GROUP BY cohort, month, months_since_signup
ORDER BY cohort, months_since_signup;
数据流水线(Data Pipeline)模式
ETL 模式
// 抽取(Extract)、转换(Transform)、加载(Load)
async function etlPipeline() {
// 1. 从源端抽取
const rawData = await extractFromPostgres()
// 2. 转换
const transformed = rawData.map(row => ({
date: new Date(row.created_at).toISOString().split('T')[0],
market_id: row.market_slug,
volume: parseFloat(row.total_volume),
trades: parseInt(row.trade_count)
}))
// 3. 加载到 ClickHouse
await bulkInsertToClickHouse(transformed)
}
// 定期运行
setInterval(etlPipeline, 60 * 60 * 1000) // 每小时
变更数据捕获(CDC)
// 监听 PostgreSQL 变更并同步到 ClickHouse
import { Client } from 'pg'
const pgClient = new Client({ connectionString: process.env.DATABASE_URL })
pgClient.query('LISTEN market_updates')
pgClient.on('notification', async (msg) => {
const update = JSON.parse(msg.payload)
await clickhouse.insert('market_updates', [
{
market_id: update.id,
event_type: update.operation, // INSERT, UPDATE, DELETE
timestamp: new Date(),
data: JSON.stringify(update.new_data)
}
])
})
最佳实践
1. 分区策略
- 按时间分区(通常是按月或按天)
- 避免分区过多(会影响性能)
- 分区键使用 DATE 类型
2. 排序键(Ordering Key)
- 将最常过滤的列放在前面
- 考虑基数(高基数列放在前面)
- 排序会影响压缩效果
3. 数据类型
- 使用最合适的最小类型(如 UInt32 而非 UInt64)
- 对重复字符串使用 LowCardinality
- 对类别数据使用 Enum
4. 避免事项
- SELECT *(应指定具体列)
- FINAL(应改为在查询前合并数据)
- 过多的 JOIN 操作(针对分析场景应进行反规范化)
- 小额频繁插入(应改为批量插入)
5. 监控
- 追踪查询性能
- 监控磁盘使用情况
- 检查合并(merge)操作
- 审查慢查询日志
记住:ClickHouse 擅长处理分析型工作负载。请根据查询模式设计表结构,采用批量插入,并利用物化视图进行实时聚合。
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.