grahama1970

batch-report

0
0
# Install this skill:
npx skills add grahama1970/agent-skills --skill "batch-report"

Install specific skill from multi-skill repository

# Description

>

# SKILL.md


name: batch-report
description: >
Generate post-run analysis reports for batch processing jobs. Analyzes manifests,
timings, and failures to produce comprehensive markdown reports. Optionally sends
to agent-inbox for cross-project communication.
allowed-tools: Bash, Read, Write
triggers:
- batch report
- generate report
- analyze batch
- summarize extraction
metadata:
short-description: Post-run batch analysis and reporting


Batch Report Skill

Generate comprehensive analysis reports for completed batch processing jobs.

Features

  • Manifest analysis - Count successes, failures, partial completions
  • Timing breakdown - Per-step latency analysis, identify bottlenecks
  • Failure patterns - Categorize and summarize failure modes
  • Quality metrics - Sample outputs for quality assessment
  • Markdown report - Human-readable summary
  • Agent-inbox integration - Auto-send to project inbox

Quick Start

cd .pi/skills/batch-report

# Generate report for extractor batch (auto-detects format)
uv run python report.py analyze /path/to/batch/output

# Generate and send to agent-inbox
uv run python report.py analyze /path/to/batch/output --send-to extractor

# Just show summary stats
uv run python report.py summary /path/to/batch/output

# Analyze a standalone state file
uv run python report.py state /path/to/.batch_state.json

# JSON output for piping
uv run python report.py summary /path/to/output --json | jq .success_rate

Commands

analyze - Full analysis report

uv run python report.py analyze /path/to/output \
    --output report.md \
    --send-to extractor \
    --priority high

Options:
| Option | Short | Description |
|--------|-------|-------------|
| --output | -o | Output file path (default: stdout) |
| --send-to | -s | Send report to agent-inbox project |
| --priority | -p | Priority for agent-inbox (low/normal/high/critical) |
| --sample | -n | Number of samples to include (default: 5) |
| --format | -f | Batch format: extractor, youtube, generic, auto (default: auto) |
| --json | -j | Output as JSON for piping to other tools |

summary - Quick stats only

uv run python report.py summary /path/to/output
uv run python report.py summary /path/to/output --json

Output:

Batch: run-2025-12-18_144426-2eb428c
Total: 230 | Success: 180 | Failed: 35 | Partial: 15
Success rate: 78.3%
Avg time: 4.2 min | Slowest: 09_section_summarizer (45%)

JSON Output:

{
  "batch": "run-2025-12-18_144426-2eb428c",
  "format": "extractor",
  "total": 230,
  "successful": 180,
  "partial": 15,
  "failed": 35,
  "success_rate": 78.3,
  "avg_time_min": 4.2
}

state - Analyze standalone state files

uv run python report.py state /path/to/.batch_state.json
uv run python report.py state /path/to/.batch_state.json --json

Works with any .batch_state.json file from any batch job.

failures - List failures with reasons

uv run python report.py failures /path/to/output
uv run python report.py failures /path/to/output --json

Report Format

# Batch Report: run-2025-12-18_144426-2eb428c

## Summary
- **Total items:** 230
- **Successful:** 180 (78.3%)
- **Failed:** 35 (15.2%)
- **Partial:** 15 (6.5%)

## Timing Analysis
| Step | Avg (s) | Max (s) | % of Total |
|------|---------|---------|------------|
| 09_section_summarizer | 120.5 | 341.0 | 45.2% |
| 05_table_extractor | 65.3 | 105.0 | 24.5% |
...

## Failure Patterns
| Pattern | Count | Example |
|---------|-------|---------|
| Empty text_content | 12 | 047ca6ef... |
| CUDA OOM | 5 | 9497a4e5... |
...

## Recommendations
1. Consider --text-only mode for knowledge extraction
2. Add table confidence threshold before VLM
...

Supported Batch Formats

The --format flag accepts: extractor, youtube, generic, or auto (default).

Auto-detect logic:
1. If */manifest.json and */timings_summary.json exist β†’ extractor
2. If .batch_state.json has "transcript" in description β†’ youtube
3. If .batch_state.json exists β†’ generic

Extractor batches

Expects:
- */manifest.json - Per-item manifests
- */timings_summary.json - Timing data
- */14_report_generator/json_output/final_report.json - Quality metrics
- failed_urls.txt - Failed items list

YouTube transcript batches

Expects:
- .batch_state.json - State file with transcript-related description

Generic batches

Expects:
- .batch_state.json - State file with completed/failed counts
- *.log files for failure analysis (optional)

Integration with agent-inbox

# Send report as bug
uv run python report.py analyze /path/to/output \
    --send-to extractor \
    --priority high

# Message sent: extractor_abc123

Dependencies

dependencies = [
    "typer",
    "rich",
]

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.