Use when you have a written implementation plan to execute in a separate session with review checkpoints
npx skills add grahama1970/agent-skills --skill "batch-report"
Install specific skill from multi-skill repository
# Description
>
# SKILL.md
name: batch-report
description: >
Generate post-run analysis reports for batch processing jobs. Analyzes manifests,
timings, and failures to produce comprehensive markdown reports. Optionally sends
to agent-inbox for cross-project communication.
allowed-tools: Bash, Read, Write
triggers:
- batch report
- generate report
- analyze batch
- summarize extraction
metadata:
short-description: Post-run batch analysis and reporting
Batch Report Skill
Generate comprehensive analysis reports for completed batch processing jobs.
Features
- Manifest analysis - Count successes, failures, partial completions
- Timing breakdown - Per-step latency analysis, identify bottlenecks
- Failure patterns - Categorize and summarize failure modes
- Quality metrics - Sample outputs for quality assessment
- Markdown report - Human-readable summary
- Agent-inbox integration - Auto-send to project inbox
Quick Start
cd .pi/skills/batch-report
# Generate report for extractor batch (auto-detects format)
uv run python report.py analyze /path/to/batch/output
# Generate and send to agent-inbox
uv run python report.py analyze /path/to/batch/output --send-to extractor
# Just show summary stats
uv run python report.py summary /path/to/batch/output
# Analyze a standalone state file
uv run python report.py state /path/to/.batch_state.json
# JSON output for piping
uv run python report.py summary /path/to/output --json | jq .success_rate
Commands
analyze - Full analysis report
uv run python report.py analyze /path/to/output \
--output report.md \
--send-to extractor \
--priority high
Options:
| Option | Short | Description |
|--------|-------|-------------|
| --output | -o | Output file path (default: stdout) |
| --send-to | -s | Send report to agent-inbox project |
| --priority | -p | Priority for agent-inbox (low/normal/high/critical) |
| --sample | -n | Number of samples to include (default: 5) |
| --format | -f | Batch format: extractor, youtube, generic, auto (default: auto) |
| --json | -j | Output as JSON for piping to other tools |
summary - Quick stats only
uv run python report.py summary /path/to/output
uv run python report.py summary /path/to/output --json
Output:
Batch: run-2025-12-18_144426-2eb428c
Total: 230 | Success: 180 | Failed: 35 | Partial: 15
Success rate: 78.3%
Avg time: 4.2 min | Slowest: 09_section_summarizer (45%)
JSON Output:
{
"batch": "run-2025-12-18_144426-2eb428c",
"format": "extractor",
"total": 230,
"successful": 180,
"partial": 15,
"failed": 35,
"success_rate": 78.3,
"avg_time_min": 4.2
}
state - Analyze standalone state files
uv run python report.py state /path/to/.batch_state.json
uv run python report.py state /path/to/.batch_state.json --json
Works with any .batch_state.json file from any batch job.
failures - List failures with reasons
uv run python report.py failures /path/to/output
uv run python report.py failures /path/to/output --json
Report Format
# Batch Report: run-2025-12-18_144426-2eb428c
## Summary
- **Total items:** 230
- **Successful:** 180 (78.3%)
- **Failed:** 35 (15.2%)
- **Partial:** 15 (6.5%)
## Timing Analysis
| Step | Avg (s) | Max (s) | % of Total |
|------|---------|---------|------------|
| 09_section_summarizer | 120.5 | 341.0 | 45.2% |
| 05_table_extractor | 65.3 | 105.0 | 24.5% |
...
## Failure Patterns
| Pattern | Count | Example |
|---------|-------|---------|
| Empty text_content | 12 | 047ca6ef... |
| CUDA OOM | 5 | 9497a4e5... |
...
## Recommendations
1. Consider --text-only mode for knowledge extraction
2. Add table confidence threshold before VLM
...
Supported Batch Formats
The --format flag accepts: extractor, youtube, generic, or auto (default).
Auto-detect logic:
1. If */manifest.json and */timings_summary.json exist β extractor
2. If .batch_state.json has "transcript" in description β youtube
3. If .batch_state.json exists β generic
Extractor batches
Expects:
- */manifest.json - Per-item manifests
- */timings_summary.json - Timing data
- */14_report_generator/json_output/final_report.json - Quality metrics
- failed_urls.txt - Failed items list
YouTube transcript batches
Expects:
- .batch_state.json - State file with transcript-related description
Generic batches
Expects:
- .batch_state.json - State file with completed/failed counts
- *.log files for failure analysis (optional)
Integration with agent-inbox
# Send report as bug
uv run python report.py analyze /path/to/output \
--send-to extractor \
--priority high
# Message sent: extractor_abc123
Dependencies
dependencies = [
"typer",
"rich",
]
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.