mjunaidca

kafka

19
9
# Install this skill:
npx skills add mjunaidca/mjs-agent-skills --skill "kafka"

Install specific skill from multi-skill repository

# Description

|

# SKILL.md


name: kafka
description: |
Apache Kafka on Kubernetes with Strimzi (KRaft mode, no ZooKeeper).
This skill should be used when users ask to deploy Kafka clusters, build
producers/consumers, implement event-driven patterns, or debug Kafka issues.
Includes tested manifests and Makefile for one-command deployment.
hooks:
PreToolUse:
- matcher: "Bash"
hooks:
- type: command
command: "bash \"$CLAUDE_PROJECT_DIR\"/.claude/hooks/verify-kubectl-context.sh"


Apache Kafka

Event streaming for Kubernetes. Strimzi operator, KRaft mode, no ZooKeeper.

Quick Start (Tested)

make install    # Deploy Strimzi + Kafka
make test       # Verify everything works
make status     # Show resources
make uninstall  # Clean up

Requirements: Kubernetes cluster, Helm 3+

Versions: Strimzi 0.49+, Kafka 4.1.1


Resource Detection & Adaptation

Before generating manifests, detect the target environment:

# Detect machine memory
sysctl -n hw.memsize 2>/dev/null | awk '{print $0/1024/1024/1024 " GB"}' || \
  grep MemTotal /proc/meminfo | awk '{print $2/1024/1024 " GB"}'

# Detect Docker Desktop allocation
docker info --format '{{.MemTotal}}' 2>/dev/null | awk '{print $0/1024/1024/1024 " GB"}'

# Detect Kubernetes node capacity
kubectl get nodes -o jsonpath='{.items[0].status.capacity.memory}' 2>/dev/null

Adapt resource configuration based on detection:

Detected RAM Profile Kafka Memory Action
< 12GB Minimal 512Mi-1Gi Warn user about constraints
12-24GB Standard 1Gi-2Gi Default configuration
> 24GB Production 4Gi-8Gi Enable full features

Adaptive Resource Templates

Minimal (detected < 12GB):

resources:
  requests:
    memory: 512Mi
    cpu: 200m
  limits:
    memory: 1Gi
    cpu: 500m

⚠️ Agent should warn: "Limited resources detected. Kafka may be unstable under load."

Standard (detected 12-24GB):

resources:
  requests:
    memory: 1Gi
    cpu: 250m
  limits:
    memory: 2Gi
    cpu: 1000m

Production (detected > 24GB or real cluster):

resources:
  requests:
    memory: 4Gi
    cpu: 1000m
  limits:
    memory: 8Gi
    cpu: 4000m

Agent Behavior

  1. Always detect before generating manifests
  2. Adapt resource configs to detected environment
  3. Warn if resources are insufficient for requested workload
  4. Suggest Docker Desktop settings if running locally

What This Skill Does

Task How
Analyze coupling Identify temporal, availability, behavioral issues
Explain eventual consistency Consistency windows, read-your-writes patterns
Design events Domain events, CloudEvents, Avro schemas
Deploy Kafka Helm (Strimzi) + kubectl (manifests)
Create topics KafkaTopic CRD
Build producers confluent-kafka-python templates
Build consumers AIOConsumer for FastAPI
Debug issues Runbooks in references/

What This Skill Does NOT Do

  • Deploy ZooKeeper (KRaft only)
  • Manage Kafka Streams applications
  • Configure multi-datacenter replication

Deployment

Install Strimzi Operator

helm repo add strimzi https://strimzi.io/charts
helm install strimzi-operator strimzi/strimzi-kafka-operator -n kafka --create-namespace --wait

Deploy Kafka Cluster

kubectl apply -f manifests/kafka-cluster.yaml -n kafka
kubectl wait kafka/dev-cluster --for=condition=Ready --timeout=300s -n kafka

Create Topic

kubectl apply -f manifests/kafka-topic.yaml -n kafka

Verify

kubectl get kafka,kafkatopic,pods -n kafka

Core Concepts

Topic      = Named stream (like a database table)
Partition  = Ordered log within topic (parallelism unit)
Consumer Group = Consumers sharing work (partition → one consumer)
Offset     = Consumer position (commit to track progress)
Broker     = Kafka server
Controller = Metadata manager (KRaft replaces ZooKeeper)

Local Development

Connect from your host machine (no port-forward needed):

# From your local machine (outside Kubernetes)
producer = Producer({'bootstrap.servers': 'localhost:30092'})

Connect from inside Kubernetes (pod-to-pod):

# From another pod in the cluster
producer = Producer({'bootstrap.servers': 'dev-cluster-kafka-bootstrap.kafka:9092'})
Location Bootstrap Server
Local machine localhost:30092
Same namespace dev-cluster-kafka-bootstrap:9092
Different namespace dev-cluster-kafka-bootstrap.kafka.svc.cluster.local:9092

Producer/Consumer (Python)

from confluent_kafka import Producer, Consumer

# Producer (production config)
producer = Producer({
    'bootstrap.servers': 'localhost:30092',  # Or K8s service for pods
    'acks': 'all',
    'enable.idempotence': True,
})
producer.produce('my-topic', key='key', value='message')
producer.flush()

# Consumer
consumer = Consumer({
    'bootstrap.servers': 'localhost:30092',
    'group.id': 'my-group',
    'auto.offset.reset': 'earliest',
    'enable.auto.commit': False,
})
consumer.subscribe(['my-topic'])
msg = consumer.poll(1.0)

See assets/templates/producer-consumer.py for async FastAPI integration.


Debugging

# Check consumer lag
kubectl exec -n kafka dev-cluster-dual-role-0 -- \
  bin/kafka-consumer-groups.sh --bootstrap-server localhost:9092 \
  --describe --group <group-name>

# List topics
kubectl exec -n kafka dev-cluster-dual-role-0 -- \
  bin/kafka-topics.sh --bootstrap-server localhost:9092 --list

# Describe topic
kubectl exec -n kafka dev-cluster-dual-role-0 -- \
  bin/kafka-topics.sh --bootstrap-server localhost:9092 \
  --describe --topic <topic-name>

See references/debugging-runbooks.md for detailed troubleshooting.


Delivery Semantics

Guarantee Config Use When
At-most-once acks=0 Metrics, logs (may lose)
At-least-once acks=all + manual commit Most cases (may duplicate)
Exactly-once Transactions Financial (higher latency)

Default: At-least-once with idempotent consumers.


File Structure

kafka/
├── Makefile                 # Tested deployment commands
├── manifests/
│   ├── kafka-cluster.yaml   # KRaft cluster (tested)
│   └── kafka-topic.yaml     # Topic CRD
├── assets/templates/
│   └── producer-consumer.py # Python async templates
└── references/              # Deep knowledge
    ├── core-concepts.md
    ├── producers.md
    ├── consumers.md
    ├── debugging-runbooks.md
    ├── gotchas.md
    └── ... (15 files)

Architecture Analysis

When analyzing synchronous architectures for coupling:

Scenario: Service A calls B, C, D directly (500ms each)

Temporal Coupling?
└── Does caller wait for all responses? → YES = coupled

Availability Coupling?
└── If B is down, does A fail? → YES = coupled

Behavioral Coupling?
└── Does A import B, C, D clients? → YES = coupled

Solution: Publish domain event, services consume independently.

See references/architecture-patterns.md for detailed analysis templates.


References

File When to Read
references/architecture-patterns.md Coupling analysis, eventual consistency, when to use Kafka
references/agent-event-patterns.md AI agent coordination, correlation IDs, fanout
references/strimzi-deployment.md KRaft mode, CRDs, storage sizing
references/producers.md Producer configuration, batching, tuning
references/consumers.md Consumer groups, commits
references/delivery-semantics.md At-most/least/exactly-once decision tree
references/outbox-pattern.md Transactional outbox with Debezium CDC
references/debugging-runbooks.md Lag, rebalancing issues
references/monitoring.md Prometheus, alerts, Grafana
references/gotchas.md Common mistakes
references/security-patterns.md SCRAM, mTLS

Skill Use For
/kubernetes Cluster operations
/helm Chart customization
/docker Local development

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.