Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add mjunaidca/mjs-agent-skills --skill "kafka"
Install specific skill from multi-skill repository
# Description
|
# SKILL.md
name: kafka
description: |
Apache Kafka on Kubernetes with Strimzi (KRaft mode, no ZooKeeper).
This skill should be used when users ask to deploy Kafka clusters, build
producers/consumers, implement event-driven patterns, or debug Kafka issues.
Includes tested manifests and Makefile for one-command deployment.
hooks:
PreToolUse:
- matcher: "Bash"
hooks:
- type: command
command: "bash \"$CLAUDE_PROJECT_DIR\"/.claude/hooks/verify-kubectl-context.sh"
Apache Kafka
Event streaming for Kubernetes. Strimzi operator, KRaft mode, no ZooKeeper.
Quick Start (Tested)
make install # Deploy Strimzi + Kafka
make test # Verify everything works
make status # Show resources
make uninstall # Clean up
Requirements: Kubernetes cluster, Helm 3+
Versions: Strimzi 0.49+, Kafka 4.1.1
Resource Detection & Adaptation
Before generating manifests, detect the target environment:
# Detect machine memory
sysctl -n hw.memsize 2>/dev/null | awk '{print $0/1024/1024/1024 " GB"}' || \
grep MemTotal /proc/meminfo | awk '{print $2/1024/1024 " GB"}'
# Detect Docker Desktop allocation
docker info --format '{{.MemTotal}}' 2>/dev/null | awk '{print $0/1024/1024/1024 " GB"}'
# Detect Kubernetes node capacity
kubectl get nodes -o jsonpath='{.items[0].status.capacity.memory}' 2>/dev/null
Adapt resource configuration based on detection:
| Detected RAM | Profile | Kafka Memory | Action |
|---|---|---|---|
| < 12GB | Minimal | 512Mi-1Gi | Warn user about constraints |
| 12-24GB | Standard | 1Gi-2Gi | Default configuration |
| > 24GB | Production | 4Gi-8Gi | Enable full features |
Adaptive Resource Templates
Minimal (detected < 12GB):
resources:
requests:
memory: 512Mi
cpu: 200m
limits:
memory: 1Gi
cpu: 500m
⚠️ Agent should warn: "Limited resources detected. Kafka may be unstable under load."
Standard (detected 12-24GB):
resources:
requests:
memory: 1Gi
cpu: 250m
limits:
memory: 2Gi
cpu: 1000m
Production (detected > 24GB or real cluster):
resources:
requests:
memory: 4Gi
cpu: 1000m
limits:
memory: 8Gi
cpu: 4000m
Agent Behavior
- Always detect before generating manifests
- Adapt resource configs to detected environment
- Warn if resources are insufficient for requested workload
- Suggest Docker Desktop settings if running locally
What This Skill Does
| Task | How |
|---|---|
| Analyze coupling | Identify temporal, availability, behavioral issues |
| Explain eventual consistency | Consistency windows, read-your-writes patterns |
| Design events | Domain events, CloudEvents, Avro schemas |
| Deploy Kafka | Helm (Strimzi) + kubectl (manifests) |
| Create topics | KafkaTopic CRD |
| Build producers | confluent-kafka-python templates |
| Build consumers | AIOConsumer for FastAPI |
| Debug issues | Runbooks in references/ |
What This Skill Does NOT Do
- Deploy ZooKeeper (KRaft only)
- Manage Kafka Streams applications
- Configure multi-datacenter replication
Deployment
Install Strimzi Operator
helm repo add strimzi https://strimzi.io/charts
helm install strimzi-operator strimzi/strimzi-kafka-operator -n kafka --create-namespace --wait
Deploy Kafka Cluster
kubectl apply -f manifests/kafka-cluster.yaml -n kafka
kubectl wait kafka/dev-cluster --for=condition=Ready --timeout=300s -n kafka
Create Topic
kubectl apply -f manifests/kafka-topic.yaml -n kafka
Verify
kubectl get kafka,kafkatopic,pods -n kafka
Core Concepts
Topic = Named stream (like a database table)
Partition = Ordered log within topic (parallelism unit)
Consumer Group = Consumers sharing work (partition → one consumer)
Offset = Consumer position (commit to track progress)
Broker = Kafka server
Controller = Metadata manager (KRaft replaces ZooKeeper)
Local Development
Connect from your host machine (no port-forward needed):
# From your local machine (outside Kubernetes)
producer = Producer({'bootstrap.servers': 'localhost:30092'})
Connect from inside Kubernetes (pod-to-pod):
# From another pod in the cluster
producer = Producer({'bootstrap.servers': 'dev-cluster-kafka-bootstrap.kafka:9092'})
| Location | Bootstrap Server |
|---|---|
| Local machine | localhost:30092 |
| Same namespace | dev-cluster-kafka-bootstrap:9092 |
| Different namespace | dev-cluster-kafka-bootstrap.kafka.svc.cluster.local:9092 |
Producer/Consumer (Python)
from confluent_kafka import Producer, Consumer
# Producer (production config)
producer = Producer({
'bootstrap.servers': 'localhost:30092', # Or K8s service for pods
'acks': 'all',
'enable.idempotence': True,
})
producer.produce('my-topic', key='key', value='message')
producer.flush()
# Consumer
consumer = Consumer({
'bootstrap.servers': 'localhost:30092',
'group.id': 'my-group',
'auto.offset.reset': 'earliest',
'enable.auto.commit': False,
})
consumer.subscribe(['my-topic'])
msg = consumer.poll(1.0)
See assets/templates/producer-consumer.py for async FastAPI integration.
Debugging
# Check consumer lag
kubectl exec -n kafka dev-cluster-dual-role-0 -- \
bin/kafka-consumer-groups.sh --bootstrap-server localhost:9092 \
--describe --group <group-name>
# List topics
kubectl exec -n kafka dev-cluster-dual-role-0 -- \
bin/kafka-topics.sh --bootstrap-server localhost:9092 --list
# Describe topic
kubectl exec -n kafka dev-cluster-dual-role-0 -- \
bin/kafka-topics.sh --bootstrap-server localhost:9092 \
--describe --topic <topic-name>
See references/debugging-runbooks.md for detailed troubleshooting.
Delivery Semantics
| Guarantee | Config | Use When |
|---|---|---|
| At-most-once | acks=0 |
Metrics, logs (may lose) |
| At-least-once | acks=all + manual commit |
Most cases (may duplicate) |
| Exactly-once | Transactions | Financial (higher latency) |
Default: At-least-once with idempotent consumers.
File Structure
kafka/
├── Makefile # Tested deployment commands
├── manifests/
│ ├── kafka-cluster.yaml # KRaft cluster (tested)
│ └── kafka-topic.yaml # Topic CRD
├── assets/templates/
│ └── producer-consumer.py # Python async templates
└── references/ # Deep knowledge
├── core-concepts.md
├── producers.md
├── consumers.md
├── debugging-runbooks.md
├── gotchas.md
└── ... (15 files)
Architecture Analysis
When analyzing synchronous architectures for coupling:
Scenario: Service A calls B, C, D directly (500ms each)
Temporal Coupling?
└── Does caller wait for all responses? → YES = coupled
Availability Coupling?
└── If B is down, does A fail? → YES = coupled
Behavioral Coupling?
└── Does A import B, C, D clients? → YES = coupled
Solution: Publish domain event, services consume independently.
See references/architecture-patterns.md for detailed analysis templates.
References
| File | When to Read |
|---|---|
references/architecture-patterns.md |
Coupling analysis, eventual consistency, when to use Kafka |
references/agent-event-patterns.md |
AI agent coordination, correlation IDs, fanout |
references/strimzi-deployment.md |
KRaft mode, CRDs, storage sizing |
references/producers.md |
Producer configuration, batching, tuning |
references/consumers.md |
Consumer groups, commits |
references/delivery-semantics.md |
At-most/least/exactly-once decision tree |
references/outbox-pattern.md |
Transactional outbox with Debezium CDC |
references/debugging-runbooks.md |
Lag, rebalancing issues |
references/monitoring.md |
Prometheus, alerts, Grafana |
references/gotchas.md |
Common mistakes |
references/security-patterns.md |
SCRAM, mTLS |
Related Skills
| Skill | Use For |
|---|---|
/kubernetes |
Cluster operations |
/helm |
Chart customization |
/docker |
Local development |
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.