Manage Apple Reminders via the `remindctl` CLI on macOS (list, add, edit, complete, delete)....
npx skills add akires47/agent-skills --skill "dotnet-database-performance"
Install specific skill from multi-skill repository
# Description
Database access patterns for performance. Separate read/write models, avoid N+1 queries, use AsNoTracking, apply row limits, and never do application-side joins. Works with EF Core and Dapper.
# SKILL.md
name: dotnet-database-performance
description: Database access patterns for performance. Separate read/write models, avoid N+1 queries, use AsNoTracking, apply row limits, and never do application-side joins. Works with EF Core and Dapper.
Database Performance Patterns
When to Use This Skill
Use this skill when:
- Designing data access layers
- Optimizing slow database queries
- Choosing between EF Core and Dapper
- Avoiding common performance pitfalls
Core Principles
- Separate read and write models - Don't use the same types for both
- Think in batches - Avoid N+1 queries
- Only retrieve what you need - No SELECT *
- Apply row limits - Always have a configurable Take/Limit
- Do joins in SQL - Never in application code
- AsNoTracking for reads - EF Core change tracking is expensive
Read/Write Model Separation
Don't think of entities as table-scoped. Separate your read models (queries) from write models (commands).
Architecture
src/
MyApp.Data/
Users/
IUserReadStore.cs # Read operations
IUserWriteStore.cs # Write operations
PostgresUserReadStore.cs
PostgresUserWriteStore.cs
Orders/
IOrderReadStore.cs
IOrderWriteStore.cs
PostgresOrderReadStore.cs
PostgresOrderWriteStore.cs
Read Store Interface
public interface IUserReadStore
{
Task<UserProfile?> GetByIdAsync(UserId id, CancellationToken ct = default);
Task<UserProfile?> GetByEmailAsync(EmailAddress email, CancellationToken ct = default);
Task<IReadOnlyList<UserSummary>> GetAllAsync(int limit, UserId? cursor = null, CancellationToken ct = default);
Task<bool> EmailExistsAsync(EmailAddress email, CancellationToken ct = default);
}
Write Store Interface
public interface IUserWriteStore
{
Task<UserId> CreateAsync(CreateUserCommand command, CancellationToken ct = default);
Task UpdateAsync(UserId id, UpdateUserCommand command, CancellationToken ct = default);
Task DeleteAsync(UserId id, CancellationToken ct = default);
}
Benefits:
- Read models are optimized for queries (projections, joins)
- Write models focus on validation and business rules
- No confusion about when to track changes
- Easier to optimize independently
Always Apply Row Limits
Never return unbounded result sets. Every read method should have a configurable limit.
Pattern: Limit Parameter
public interface IOrderReadStore
{
// Limit is required, not optional
Task<IReadOnlyList<OrderSummary>> GetByCustomerAsync(
CustomerId customerId,
int limit,
OrderId? cursor = null,
CancellationToken ct = default);
}
// Implementation
public async Task<IReadOnlyList<OrderSummary>> GetByCustomerAsync(
CustomerId customerId,
int limit,
OrderId? cursor = null,
CancellationToken ct = default)
{
await using var connection = await _dataSource.OpenConnectionAsync(ct);
const string sql = """
SELECT id, customer_id, total, status, created_at
FROM orders
WHERE customer_id = @CustomerId
AND (@Cursor IS NULL OR created_at < (SELECT created_at FROM orders WHERE id = @Cursor))
ORDER BY created_at DESC
LIMIT @Limit
""";
var rows = await connection.QueryAsync<OrderRow>(sql, new
{
CustomerId = customerId.Value,
Cursor = cursor?.Value,
Limit = limit
});
return rows.Select(r => r.ToOrderSummary()).ToList();
}
EF Core with Pagination
public async Task<PaginatedList<OrderSummary>> GetOrdersAsync(
CustomerId customerId,
Paginator paginator,
CancellationToken ct = default)
{
var query = _context.Orders
.AsNoTracking()
.Where(o => o.CustomerId == customerId.Value)
.OrderByDescending(o => o.CreatedAt);
var totalCount = await query.CountAsync(ct);
var orders = await query
.Skip((paginator.PageNumber - 1) * paginator.PageSize)
.Take(paginator.PageSize) // Always limit!
.Select(o => new OrderSummary(
new OrderId(o.Id),
o.Total,
o.Status,
o.CreatedAt))
.ToListAsync(ct);
return new PaginatedList<OrderSummary>(
orders,
totalCount,
paginator.PageSize,
paginator.PageNumber);
}
AsNoTracking for Read Queries
EF Core's change tracking is expensive. Disable it for read-only queries.
// DO: Disable tracking for reads
var users = await _context.Users
.AsNoTracking()
.Where(u => u.IsActive)
.ToListAsync();
// DON'T: Track entities you won't modify
var users = await _context.Users
.Where(u => u.IsActive)
.ToListAsync(); // Change tracking enabled - wasteful
Configure Default Behavior
// For read-heavy applications, consider this in DbContext
protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
{
optionsBuilder.UseQueryTrackingBehavior(QueryTrackingBehavior.NoTracking);
}
Then explicitly enable tracking when needed:
var user = await _context.Users
.AsTracking() // Explicit - we intend to modify
.FirstOrDefaultAsync(u => u.Id == userId);
Avoid N+1 Queries
The N+1 problem: fetching a list, then querying for each item's related data.
The Problem
// BAD: N+1 queries
var orders = await _context.Orders.ToListAsync();
foreach (var order in orders)
{
// Each iteration hits the database!
var items = await _context.OrderItems
.Where(i => i.OrderId == order.Id)
.ToListAsync();
}
Solution 1: Include (EF Core)
// GOOD: Single query with join
var orders = await _context.Orders
.AsNoTracking()
.Include(o => o.Items)
.ToListAsync();
Solution 2: Batch Query (Dapper)
// GOOD: Two queries, no N+1
const string sql = """
SELECT id, customer_id, total FROM orders WHERE customer_id = @CustomerId;
SELECT oi.* FROM order_items oi
INNER JOIN orders o ON oi.order_id = o.id
WHERE o.customer_id = @CustomerId;
""";
using var multi = await connection.QueryMultipleAsync(sql, new { CustomerId = customerId });
var orders = (await multi.ReadAsync<OrderRow>()).ToList();
var items = (await multi.ReadAsync<OrderItemRow>()).ToList();
// Join in memory (acceptable - data already fetched)
foreach (var order in orders)
{
order.Items = items.Where(i => i.OrderId == order.Id).ToList();
}
Never Do Application-Side Joins
Joins must happen in SQL, not in C#.
// BAD: Application join - two queries, memory waste
var customers = await _context.Customers.ToListAsync();
var orders = await _context.Orders.ToListAsync();
var result = customers.Select(c => new
{
Customer = c,
Orders = orders.Where(o => o.CustomerId == c.Id).ToList() // O(n*m) in memory!
});
// GOOD: SQL join - single query
var result = await _context.Customers
.AsNoTracking()
.Include(c => c.Orders)
.ToListAsync();
// GOOD: Explicit join (Dapper)
const string sql = """
SELECT c.id, c.name, COUNT(o.id) as order_count
FROM customers c
LEFT JOIN orders o ON c.id = o.customer_id
GROUP BY c.id, c.name
""";
Avoid Cartesian Explosions
Multiple Include calls can cause Cartesian products.
// DANGEROUS: Can explode into millions of rows
var product = await _context.Products
.Include(p => p.Reviews) // 100 reviews
.Include(p => p.Images) // 20 images
.Include(p => p.Categories) // 5 categories
.FirstOrDefaultAsync(p => p.Id == id);
// Result: 100 * 20 * 5 = 10,000 rows transferred!
Solution: Split Queries
// GOOD: Multiple queries, no Cartesian explosion
var product = await _context.Products
.AsSplitQuery()
.Include(p => p.Reviews)
.Include(p => p.Images)
.Include(p => p.Categories)
.FirstOrDefaultAsync(p => p.Id == id);
// Result: 4 separate queries, ~125 rows total
Solution: Explicit Projection
// BEST: Only fetch what you need
var product = await _context.Products
.AsNoTracking()
.Where(p => p.Id == id)
.Select(p => new ProductDetail(
p.Id,
p.Name,
p.Description,
p.Reviews.OrderByDescending(r => r.CreatedAt).Take(10).ToList(),
p.Images.Take(5).ToList(),
p.Categories.Select(c => c.Name).ToList()))
.FirstOrDefaultAsync();
Constrain Column Sizes
Define maximum lengths in your EF Core model to prevent oversized data.
public class UserConfiguration : IEntityTypeConfiguration<User>
{
public void Configure(EntityTypeBuilder<User> builder)
{
builder.Property(u => u.Email)
.HasMaxLength(254) // RFC 5321 limit
.IsRequired();
builder.Property(u => u.Name)
.HasMaxLength(100)
.IsRequired();
builder.Property(u => u.Bio)
.HasMaxLength(500);
// For truly large content, use text type explicitly
builder.Property(u => u.Notes)
.HasColumnType("text");
}
}
Don't Build Generic Repositories
Generic repositories hide query complexity and make optimization difficult.
// BAD: Generic repository
public interface IRepository<T>
{
Task<T?> GetByIdAsync(int id);
Task<IEnumerable<T>> GetAllAsync(); // No limit!
Task<IEnumerable<T>> FindAsync(Expression<Func<T, bool>> predicate); // Can't optimize
}
// GOOD: Purpose-built read stores
public interface IOrderReadStore
{
Task<OrderDetail?> GetByIdAsync(OrderId id, CancellationToken ct = default);
Task<IReadOnlyList<OrderSummary>> GetByCustomerAsync(CustomerId id, int limit, CancellationToken ct = default);
Task<IReadOnlyList<OrderSummary>> GetPendingAsync(int limit, CancellationToken ct = default);
}
Problems with generic repositories:
- Can't optimize specific queries
- No way to enforce limits
- Hide N+1 problems
- Make it easy to fetch too much data
- Encourage lazy thinking about data access
Dapper for Read-Heavy Workloads
For complex read queries, Dapper with explicit SQL is often cleaner and faster.
public sealed class PostgresUserReadStore : IUserReadStore
{
private readonly NpgsqlDataSource _dataSource;
public PostgresUserReadStore(NpgsqlDataSource dataSource)
{
_dataSource = dataSource;
}
public async Task<UserProfile?> GetByIdAsync(UserId id, CancellationToken ct = default)
{
await using var connection = await _dataSource.OpenConnectionAsync(ct);
const string sql = """
SELECT id, email, name, bio, created_at
FROM users
WHERE id = @Id
""";
var row = await connection.QuerySingleOrDefaultAsync<UserRow>(
sql, new { Id = id.Value });
return row?.ToUserProfile();
}
// Internal row type for Dapper mapping
private sealed class UserRow
{
public Guid id { get; set; }
public string email { get; set; } = null!;
public string name { get; set; } = null!;
public string? bio { get; set; }
public DateTime created_at { get; set; }
public UserProfile ToUserProfile() => new(
Id: new UserId(id),
Email: new EmailAddress(email),
Name: new PersonName(name),
Bio: bio,
CreatedAt: new DateTimeOffset(created_at, TimeSpan.Zero));
}
}
When to Use EF Core vs Dapper
| Scenario | Recommendation |
|---|---|
| Simple CRUD | EF Core |
| Complex read queries | Dapper |
| Writes with validation | EF Core |
| Bulk operations | Dapper or raw SQL |
| Reporting/analytics | Dapper |
| Domain-heavy writes | EF Core |
You can use both in the same project - EF Core for writes, Dapper for reads.
Quick Reference
| Anti-Pattern | Solution |
|---|---|
| No row limit | Add limit parameter to every read method |
| SELECT * | Project only needed columns |
| N+1 queries | Use Include or batch queries |
| Application joins | Do joins in SQL |
| Cartesian explosion | Use AsSplitQuery or projection |
| Tracking read-only data | Use AsNoTracking |
| Generic repository | Purpose-built read/write stores |
| Unbounded strings | Configure MaxLength in model |
Resources
- EF Core Performance: https://learn.microsoft.com/en-us/ef/core/performance/
- Dapper: https://github.com/DapperLib/Dapper
- AsSplitQuery: https://learn.microsoft.com/en-us/ef/core/querying/single-split-queries
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.