akires47

dotnet-database-performance

0
0
# Install this skill:
npx skills add akires47/agent-skills --skill "dotnet-database-performance"

Install specific skill from multi-skill repository

# Description

Database access patterns for performance. Separate read/write models, avoid N+1 queries, use AsNoTracking, apply row limits, and never do application-side joins. Works with EF Core and Dapper.

# SKILL.md


name: dotnet-database-performance
description: Database access patterns for performance. Separate read/write models, avoid N+1 queries, use AsNoTracking, apply row limits, and never do application-side joins. Works with EF Core and Dapper.


Database Performance Patterns

When to Use This Skill

Use this skill when:
- Designing data access layers
- Optimizing slow database queries
- Choosing between EF Core and Dapper
- Avoiding common performance pitfalls


Core Principles

  1. Separate read and write models - Don't use the same types for both
  2. Think in batches - Avoid N+1 queries
  3. Only retrieve what you need - No SELECT *
  4. Apply row limits - Always have a configurable Take/Limit
  5. Do joins in SQL - Never in application code
  6. AsNoTracking for reads - EF Core change tracking is expensive

Read/Write Model Separation

Don't think of entities as table-scoped. Separate your read models (queries) from write models (commands).

Architecture

src/
  MyApp.Data/
    Users/
      IUserReadStore.cs      # Read operations
      IUserWriteStore.cs     # Write operations
      PostgresUserReadStore.cs
      PostgresUserWriteStore.cs
    Orders/
      IOrderReadStore.cs
      IOrderWriteStore.cs
      PostgresOrderReadStore.cs
      PostgresOrderWriteStore.cs

Read Store Interface

public interface IUserReadStore
{
    Task<UserProfile?> GetByIdAsync(UserId id, CancellationToken ct = default);
    Task<UserProfile?> GetByEmailAsync(EmailAddress email, CancellationToken ct = default);
    Task<IReadOnlyList<UserSummary>> GetAllAsync(int limit, UserId? cursor = null, CancellationToken ct = default);
    Task<bool> EmailExistsAsync(EmailAddress email, CancellationToken ct = default);
}

Write Store Interface

public interface IUserWriteStore
{
    Task<UserId> CreateAsync(CreateUserCommand command, CancellationToken ct = default);
    Task UpdateAsync(UserId id, UpdateUserCommand command, CancellationToken ct = default);
    Task DeleteAsync(UserId id, CancellationToken ct = default);
}

Benefits:
- Read models are optimized for queries (projections, joins)
- Write models focus on validation and business rules
- No confusion about when to track changes
- Easier to optimize independently


Always Apply Row Limits

Never return unbounded result sets. Every read method should have a configurable limit.

Pattern: Limit Parameter

public interface IOrderReadStore
{
    // Limit is required, not optional
    Task<IReadOnlyList<OrderSummary>> GetByCustomerAsync(
        CustomerId customerId,
        int limit,
        OrderId? cursor = null,
        CancellationToken ct = default);
}

// Implementation
public async Task<IReadOnlyList<OrderSummary>> GetByCustomerAsync(
    CustomerId customerId,
    int limit,
    OrderId? cursor = null,
    CancellationToken ct = default)
{
    await using var connection = await _dataSource.OpenConnectionAsync(ct);

    const string sql = """
        SELECT id, customer_id, total, status, created_at
        FROM orders
        WHERE customer_id = @CustomerId
        AND (@Cursor IS NULL OR created_at < (SELECT created_at FROM orders WHERE id = @Cursor))
        ORDER BY created_at DESC
        LIMIT @Limit
        """;

    var rows = await connection.QueryAsync<OrderRow>(sql, new
    {
        CustomerId = customerId.Value,
        Cursor = cursor?.Value,
        Limit = limit
    });

    return rows.Select(r => r.ToOrderSummary()).ToList();
}

EF Core with Pagination

public async Task<PaginatedList<OrderSummary>> GetOrdersAsync(
    CustomerId customerId,
    Paginator paginator,
    CancellationToken ct = default)
{
    var query = _context.Orders
        .AsNoTracking()
        .Where(o => o.CustomerId == customerId.Value)
        .OrderByDescending(o => o.CreatedAt);

    var totalCount = await query.CountAsync(ct);

    var orders = await query
        .Skip((paginator.PageNumber - 1) * paginator.PageSize)
        .Take(paginator.PageSize)  // Always limit!
        .Select(o => new OrderSummary(
            new OrderId(o.Id),
            o.Total,
            o.Status,
            o.CreatedAt))
        .ToListAsync(ct);

    return new PaginatedList<OrderSummary>(
        orders,
        totalCount,
        paginator.PageSize,
        paginator.PageNumber);
}

AsNoTracking for Read Queries

EF Core's change tracking is expensive. Disable it for read-only queries.

// DO: Disable tracking for reads
var users = await _context.Users
    .AsNoTracking()
    .Where(u => u.IsActive)
    .ToListAsync();

// DON'T: Track entities you won't modify
var users = await _context.Users
    .Where(u => u.IsActive)
    .ToListAsync();  // Change tracking enabled - wasteful

Configure Default Behavior

// For read-heavy applications, consider this in DbContext
protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
{
    optionsBuilder.UseQueryTrackingBehavior(QueryTrackingBehavior.NoTracking);
}

Then explicitly enable tracking when needed:

var user = await _context.Users
    .AsTracking()  // Explicit - we intend to modify
    .FirstOrDefaultAsync(u => u.Id == userId);

Avoid N+1 Queries

The N+1 problem: fetching a list, then querying for each item's related data.

The Problem

// BAD: N+1 queries
var orders = await _context.Orders.ToListAsync();

foreach (var order in orders)
{
    // Each iteration hits the database!
    var items = await _context.OrderItems
        .Where(i => i.OrderId == order.Id)
        .ToListAsync();
}

Solution 1: Include (EF Core)

// GOOD: Single query with join
var orders = await _context.Orders
    .AsNoTracking()
    .Include(o => o.Items)
    .ToListAsync();

Solution 2: Batch Query (Dapper)

// GOOD: Two queries, no N+1
const string sql = """
    SELECT id, customer_id, total FROM orders WHERE customer_id = @CustomerId;
    SELECT oi.* FROM order_items oi
    INNER JOIN orders o ON oi.order_id = o.id
    WHERE o.customer_id = @CustomerId;
    """;

using var multi = await connection.QueryMultipleAsync(sql, new { CustomerId = customerId });
var orders = (await multi.ReadAsync<OrderRow>()).ToList();
var items = (await multi.ReadAsync<OrderItemRow>()).ToList();

// Join in memory (acceptable - data already fetched)
foreach (var order in orders)
{
    order.Items = items.Where(i => i.OrderId == order.Id).ToList();
}

Never Do Application-Side Joins

Joins must happen in SQL, not in C#.

// BAD: Application join - two queries, memory waste
var customers = await _context.Customers.ToListAsync();
var orders = await _context.Orders.ToListAsync();

var result = customers.Select(c => new
{
    Customer = c,
    Orders = orders.Where(o => o.CustomerId == c.Id).ToList()  // O(n*m) in memory!
});

// GOOD: SQL join - single query
var result = await _context.Customers
    .AsNoTracking()
    .Include(c => c.Orders)
    .ToListAsync();

// GOOD: Explicit join (Dapper)
const string sql = """
    SELECT c.id, c.name, COUNT(o.id) as order_count
    FROM customers c
    LEFT JOIN orders o ON c.id = o.customer_id
    GROUP BY c.id, c.name
    """;

Avoid Cartesian Explosions

Multiple Include calls can cause Cartesian products.

// DANGEROUS: Can explode into millions of rows
var product = await _context.Products
    .Include(p => p.Reviews)      // 100 reviews
    .Include(p => p.Images)       // 20 images
    .Include(p => p.Categories)   // 5 categories
    .FirstOrDefaultAsync(p => p.Id == id);
// Result: 100 * 20 * 5 = 10,000 rows transferred!

Solution: Split Queries

// GOOD: Multiple queries, no Cartesian explosion
var product = await _context.Products
    .AsSplitQuery()
    .Include(p => p.Reviews)
    .Include(p => p.Images)
    .Include(p => p.Categories)
    .FirstOrDefaultAsync(p => p.Id == id);
// Result: 4 separate queries, ~125 rows total

Solution: Explicit Projection

// BEST: Only fetch what you need
var product = await _context.Products
    .AsNoTracking()
    .Where(p => p.Id == id)
    .Select(p => new ProductDetail(
        p.Id,
        p.Name,
        p.Description,
        p.Reviews.OrderByDescending(r => r.CreatedAt).Take(10).ToList(),
        p.Images.Take(5).ToList(),
        p.Categories.Select(c => c.Name).ToList()))
    .FirstOrDefaultAsync();

Constrain Column Sizes

Define maximum lengths in your EF Core model to prevent oversized data.

public class UserConfiguration : IEntityTypeConfiguration<User>
{
    public void Configure(EntityTypeBuilder<User> builder)
    {
        builder.Property(u => u.Email)
            .HasMaxLength(254)  // RFC 5321 limit
            .IsRequired();

        builder.Property(u => u.Name)
            .HasMaxLength(100)
            .IsRequired();

        builder.Property(u => u.Bio)
            .HasMaxLength(500);

        // For truly large content, use text type explicitly
        builder.Property(u => u.Notes)
            .HasColumnType("text");
    }
}

Don't Build Generic Repositories

Generic repositories hide query complexity and make optimization difficult.

// BAD: Generic repository
public interface IRepository<T>
{
    Task<T?> GetByIdAsync(int id);
    Task<IEnumerable<T>> GetAllAsync();  // No limit!
    Task<IEnumerable<T>> FindAsync(Expression<Func<T, bool>> predicate);  // Can't optimize
}

// GOOD: Purpose-built read stores
public interface IOrderReadStore
{
    Task<OrderDetail?> GetByIdAsync(OrderId id, CancellationToken ct = default);
    Task<IReadOnlyList<OrderSummary>> GetByCustomerAsync(CustomerId id, int limit, CancellationToken ct = default);
    Task<IReadOnlyList<OrderSummary>> GetPendingAsync(int limit, CancellationToken ct = default);
}

Problems with generic repositories:
- Can't optimize specific queries
- No way to enforce limits
- Hide N+1 problems
- Make it easy to fetch too much data
- Encourage lazy thinking about data access


Dapper for Read-Heavy Workloads

For complex read queries, Dapper with explicit SQL is often cleaner and faster.

public sealed class PostgresUserReadStore : IUserReadStore
{
    private readonly NpgsqlDataSource _dataSource;

    public PostgresUserReadStore(NpgsqlDataSource dataSource)
    {
        _dataSource = dataSource;
    }

    public async Task<UserProfile?> GetByIdAsync(UserId id, CancellationToken ct = default)
    {
        await using var connection = await _dataSource.OpenConnectionAsync(ct);

        const string sql = """
            SELECT id, email, name, bio, created_at
            FROM users
            WHERE id = @Id
            """;

        var row = await connection.QuerySingleOrDefaultAsync<UserRow>(
            sql, new { Id = id.Value });

        return row?.ToUserProfile();
    }

    // Internal row type for Dapper mapping
    private sealed class UserRow
    {
        public Guid id { get; set; }
        public string email { get; set; } = null!;
        public string name { get; set; } = null!;
        public string? bio { get; set; }
        public DateTime created_at { get; set; }

        public UserProfile ToUserProfile() => new(
            Id: new UserId(id),
            Email: new EmailAddress(email),
            Name: new PersonName(name),
            Bio: bio,
            CreatedAt: new DateTimeOffset(created_at, TimeSpan.Zero));
    }
}

When to Use EF Core vs Dapper

Scenario Recommendation
Simple CRUD EF Core
Complex read queries Dapper
Writes with validation EF Core
Bulk operations Dapper or raw SQL
Reporting/analytics Dapper
Domain-heavy writes EF Core

You can use both in the same project - EF Core for writes, Dapper for reads.


Quick Reference

Anti-Pattern Solution
No row limit Add limit parameter to every read method
SELECT * Project only needed columns
N+1 queries Use Include or batch queries
Application joins Do joins in SQL
Cartesian explosion Use AsSplitQuery or projection
Tracking read-only data Use AsNoTracking
Generic repository Purpose-built read/write stores
Unbounded strings Configure MaxLength in model

Resources

  • EF Core Performance: https://learn.microsoft.com/en-us/ef/core/performance/
  • Dapper: https://github.com/DapperLib/Dapper
  • AsSplitQuery: https://learn.microsoft.com/en-us/ef/core/querying/single-split-queries

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.