ramidamolis-alt

agentic-workflow

0
0
# Install this skill:
npx skills add ramidamolis-alt/agent-skills-workflows --skill "agentic-workflow"

Install specific skill from multi-skill repository

# Description

Expert in multi-agent orchestration with ALL 11 MCP servers. Designs complex agentic pipelines, parallel execution, and autonomous workflows. Use for complex automation requiring multiple agents.

# SKILL.md


name: agentic-workflow
description: Expert in multi-agent orchestration with ALL 11 MCP servers. Designs complex agentic pipelines, parallel execution, and autonomous workflows. Use for complex automation requiring multiple agents.


🔄 Agentic Workflow Expert (Full MCP Orchestration)

Master of multi-agent workflows using ALL 11 MCP servers.

MCP Orchestration Patterns

Parallel Search Storm

// Fire ALL search MCPs simultaneously
const results = await Promise.all([
  mcp_Memory_search_nodes(query),
  mcp_Context7_query-docs(lib, query),
  mcp_Tavily_search(query),
  mcp_Brave_brave_web_search(query),
  mcp_DuckDuckGo_web-search(query),
  mcp_NotebookLM_search_notebooks(query)
]);

// Merge and rank results
const merged = mergeByRelevance(results);

Deep Research Pipeline

// Phase 1: Quick search
const quickResults = await mcp_Brave_brave_web_search(query);

// Phase 2: Deep if needed
if (quickResults.insufficient) {
  const deep = await mcp_NotebookLM_ask_question(
    detailedQuery, 
    notebook_id
  );
}

// Phase 3: Analyze with UltraThink
const analysis = await mcp_UltraThink_ultrathink({
  thought: `Synthesizing findings...`,
  total_thoughts: 30
});

// Phase 4: Store learnings
await mcp_Memory_create_entities([{
  name: "Research_" + topic,
  entityType: "Learning",
  observations: analysis.insights
}]);

Sequential Processing Chain

// Step-by-step with checkpoints
const steps = [
  async () => mcp_Memory_search_nodes("context"),
  async () => mcp_Context7_query-docs(lib, "pattern"),
  async () => mcp_UltraThink_ultrathink({thought: "plan"}),
  async () => executeCode(),
  async () => mcp_Memory_create_entities([result])
];

for (const [i, step] of steps.entries()) {
  const result = await step();
  await checkpoint(i, result);
  if (result.failed) {
    await rollback(i);
    break;
  }
}

Multi-Agent Patterns

Supervisor Pattern

         ┌─────────────────────┐
         │    Supervisor       │
         │  (UltraThink 100)   │
         └──────────┬──────────┘
     ┌──────────────┼──────────────┐
     ▼              ▼              ▼
┌─────────┐   ┌─────────┐   ┌─────────┐
│Research │   │  Code   │   │  Test   │
│ Agent   │   │  Agent  │   │  Agent  │
│(Brave+  │   │(Context7│   │(MongoDB │
│ Tavily) │   │+Memory) │   │+FS)     │
└────┬────┘   └────┬────┘   └────┬────┘
     └──────────────┴──────────────┘
                    ▼
              Aggregation

Debate Pattern

// Agent A: Propose solution
const proposalA = await mcp_UltraThink_ultrathink({
  thought: "Proposing approach A...",
  total_thoughts: 15
});

// Agent B: Counter-argument
const counterB = await mcp_UltraThink_ultrathink({
  thought: `Challenging approach A:
    - Weakness 1: ...
    - Alternative: ...`,
  total_thoughts: 15,
  branch_from_thought: 10,
  branch_id: "counter"
});

// Judge: Make decision
const decision = await mcp_SequentialThinking_sequentialthinking({
  thought: `Evaluating debate:
    - Proposal A: ${proposalA.conclusion}
    - Counter B: ${counterB.conclusion}
    - Winner: ...`,
  thoughtNumber: 1,
  totalThoughts: 5
});

Pipeline Pattern

┌──────────┐    ┌──────────┐    ┌──────────┐    ┌──────────┐
│ Research │ →  │ Planning │ →  │  Coding  │ →  │  Review  │
│ (Search  │    │(UltraThink│   │(Filesystem│   │(Sequential│
│  MCPs)   │    │  +Memory) │   │ +Context7)│   │ Thinking) │
└──────────┘    └──────────┘    └──────────┘    └──────────┘
                                                     │
                                                     ▼
                                              ┌──────────┐
                                              │  Deploy  │
                                              │(Notion + │
                                              │  Memory) │
                                              └──────────┘

Error Recovery Framework

Retry with MCP Fallback

const searchWithFallback = async (query) => {
  const strategies = [
    () => mcp_Tavily_search(query),
    () => mcp_Brave_brave_web_search(query),
    () => mcp_DuckDuckGo_web-search(query),
    () => mcp_Context7_query-docs(lib, query),
    () => mcp_NotebookLM_ask_question(query, nb)
  ];

  for (const strategy of strategies) {
    try {
      const result = await strategy();
      if (result.relevant) return result;
    } catch (e) {
      continue; // Try next
    }
  }
  throw new Error("All strategies exhausted");
};

Self-Healing Workflow

const selfHealingExecute = async (task) => {
  try {
    return await execute(task);
  } catch (error) {
    // Search for fix in Memory
    const pastFixes = await mcp_Memory_search_nodes(
      `bug ${error.type}`
    );

    // Analyze error
    const analysis = await mcp_UltraThink_ultrathink({
      thought: `Error: ${error.message}
        Past fixes: ${pastFixes}
        Proposed fix: ...`,
      total_thoughts: 10
    });

    // Apply fix and retry
    await applyFix(analysis.fix);
    return await execute(task);
  }
};

Advanced Orchestration Secrets

1. Adaptive Parallelism

// Start with parallel, sequentialize if conflicts
const parallel = await Promise.allSettled([
  mcp_MongoDB_find(db, col1, {}),
  mcp_MongoDB_find(db, col2, {}),
  mcp_Memory_read_graph()
]);

const failed = parallel.filter(r => r.status === 'rejected');
if (failed.length > 0) {
  // Retry failed ones sequentially
  for (const f of failed) {
    await f.original();
  }
}

2. Context Propagation

// Pass context through workflow
const context = {
  memory: await mcp_Memory_read_graph(),
  project: "current-project",
  timestamp: Date.now()
};

// Each step receives context
await step1(context);
context.step1Result = result1;

await step2(context);
context.step2Result = result2;

// Final aggregation has full context

3. Checkpoint & Resume

// Save state to MongoDB
const saveCheckpoint = async (workflowId, step, data) => {
  await mcp_MongoDB_update-many(
    "workflows", "checkpoints",
    { workflowId },
    { $set: { step, data, timestamp: new Date() } },
    { upsert: true }
  );
};

// Resume from checkpoint
const resume = async (workflowId) => {
  const checkpoint = await mcp_MongoDB_find(
    "workflows", "checkpoints",
    { workflowId }
  );
  return executeFromStep(checkpoint.step, checkpoint.data);
};

4. Workflow Versioning

// Track workflow versions
await mcp_Memory_create_entities([{
  name: `Workflow_${name}_v${version}`,
  entityType: "Workflow",
  observations: [
    `Version: ${version}`,
    `Steps: ${steps.join(' → ')}`,
    `Changes from v${version-1}: ${changes}`
  ]
}]);

5. Performance Monitoring

// Track execution times
const tracked = async (name, fn) => {
  const start = Date.now();
  const result = await fn();
  const duration = Date.now() - start;

  await mcp_Memory_add_observations([{
    entityName: "PerformanceMetrics",
    contents: [`${name}: ${duration}ms @ ${new Date().toISOString()}`]
  }]);

  return result;
};

6. Dynamic Workflow Generation

// Use UltraThink to design workflow
const workflowDesign = await mcp_UltraThink_ultrathink({
  thought: `Given task: ${taskDescription}
    Available MCPs: ${mcpList}
    Design optimal workflow:
    - Step 1: ...
    - Step 2: ...
    - Parallel opportunities: ...
    - Error handling: ...`,
  total_thoughts: 20
});

// Execute designed workflow
await executeWorkflow(workflowDesign.steps);

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.