Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add ramidamolis-alt/agent-skills-workflows --skill "agentic-workflow"
Install specific skill from multi-skill repository
# Description
Expert in multi-agent orchestration with ALL 11 MCP servers. Designs complex agentic pipelines, parallel execution, and autonomous workflows. Use for complex automation requiring multiple agents.
# SKILL.md
name: agentic-workflow
description: Expert in multi-agent orchestration with ALL 11 MCP servers. Designs complex agentic pipelines, parallel execution, and autonomous workflows. Use for complex automation requiring multiple agents.
π Agentic Workflow Expert (Full MCP Orchestration)
Master of multi-agent workflows using ALL 11 MCP servers.
MCP Orchestration Patterns
Parallel Search Storm
// Fire ALL search MCPs simultaneously
const results = await Promise.all([
mcp_Memory_search_nodes(query),
mcp_Context7_query-docs(lib, query),
mcp_Tavily_search(query),
mcp_Brave_brave_web_search(query),
mcp_DuckDuckGo_web-search(query),
mcp_NotebookLM_search_notebooks(query)
]);
// Merge and rank results
const merged = mergeByRelevance(results);
Deep Research Pipeline
// Phase 1: Quick search
const quickResults = await mcp_Brave_brave_web_search(query);
// Phase 2: Deep if needed
if (quickResults.insufficient) {
const deep = await mcp_NotebookLM_ask_question(
detailedQuery,
notebook_id
);
}
// Phase 3: Analyze with UltraThink
const analysis = await mcp_UltraThink_ultrathink({
thought: `Synthesizing findings...`,
total_thoughts: 30
});
// Phase 4: Store learnings
await mcp_Memory_create_entities([{
name: "Research_" + topic,
entityType: "Learning",
observations: analysis.insights
}]);
Sequential Processing Chain
// Step-by-step with checkpoints
const steps = [
async () => mcp_Memory_search_nodes("context"),
async () => mcp_Context7_query-docs(lib, "pattern"),
async () => mcp_UltraThink_ultrathink({thought: "plan"}),
async () => executeCode(),
async () => mcp_Memory_create_entities([result])
];
for (const [i, step] of steps.entries()) {
const result = await step();
await checkpoint(i, result);
if (result.failed) {
await rollback(i);
break;
}
}
Multi-Agent Patterns
Supervisor Pattern
βββββββββββββββββββββββ
β Supervisor β
β (UltraThink 100) β
ββββββββββββ¬βββββββββββ
ββββββββββββββββΌβββββββββββββββ
βΌ βΌ βΌ
βββββββββββ βββββββββββ βββββββββββ
βResearch β β Code β β Test β
β Agent β β Agent β β Agent β
β(Brave+ β β(Context7β β(MongoDB β
β Tavily) β β+Memory) β β+FS) β
ββββββ¬βββββ ββββββ¬βββββ ββββββ¬βββββ
ββββββββββββββββ΄βββββββββββββββ
βΌ
Aggregation
Debate Pattern
// Agent A: Propose solution
const proposalA = await mcp_UltraThink_ultrathink({
thought: "Proposing approach A...",
total_thoughts: 15
});
// Agent B: Counter-argument
const counterB = await mcp_UltraThink_ultrathink({
thought: `Challenging approach A:
- Weakness 1: ...
- Alternative: ...`,
total_thoughts: 15,
branch_from_thought: 10,
branch_id: "counter"
});
// Judge: Make decision
const decision = await mcp_SequentialThinking_sequentialthinking({
thought: `Evaluating debate:
- Proposal A: ${proposalA.conclusion}
- Counter B: ${counterB.conclusion}
- Winner: ...`,
thoughtNumber: 1,
totalThoughts: 5
});
Pipeline Pattern
ββββββββββββ ββββββββββββ ββββββββββββ ββββββββββββ
β Research β β β Planning β β β Coding β β β Review β
β (Search β β(UltraThinkβ β(Filesystemβ β(Sequentialβ
β MCPs) β β +Memory) β β +Context7)β β Thinking) β
ββββββββββββ ββββββββββββ ββββββββββββ ββββββββββββ
β
βΌ
ββββββββββββ
β Deploy β
β(Notion + β
β Memory) β
ββββββββββββ
Error Recovery Framework
Retry with MCP Fallback
const searchWithFallback = async (query) => {
const strategies = [
() => mcp_Tavily_search(query),
() => mcp_Brave_brave_web_search(query),
() => mcp_DuckDuckGo_web-search(query),
() => mcp_Context7_query-docs(lib, query),
() => mcp_NotebookLM_ask_question(query, nb)
];
for (const strategy of strategies) {
try {
const result = await strategy();
if (result.relevant) return result;
} catch (e) {
continue; // Try next
}
}
throw new Error("All strategies exhausted");
};
Self-Healing Workflow
const selfHealingExecute = async (task) => {
try {
return await execute(task);
} catch (error) {
// Search for fix in Memory
const pastFixes = await mcp_Memory_search_nodes(
`bug ${error.type}`
);
// Analyze error
const analysis = await mcp_UltraThink_ultrathink({
thought: `Error: ${error.message}
Past fixes: ${pastFixes}
Proposed fix: ...`,
total_thoughts: 10
});
// Apply fix and retry
await applyFix(analysis.fix);
return await execute(task);
}
};
Advanced Orchestration Secrets
1. Adaptive Parallelism
// Start with parallel, sequentialize if conflicts
const parallel = await Promise.allSettled([
mcp_MongoDB_find(db, col1, {}),
mcp_MongoDB_find(db, col2, {}),
mcp_Memory_read_graph()
]);
const failed = parallel.filter(r => r.status === 'rejected');
if (failed.length > 0) {
// Retry failed ones sequentially
for (const f of failed) {
await f.original();
}
}
2. Context Propagation
// Pass context through workflow
const context = {
memory: await mcp_Memory_read_graph(),
project: "current-project",
timestamp: Date.now()
};
// Each step receives context
await step1(context);
context.step1Result = result1;
await step2(context);
context.step2Result = result2;
// Final aggregation has full context
3. Checkpoint & Resume
// Save state to MongoDB
const saveCheckpoint = async (workflowId, step, data) => {
await mcp_MongoDB_update-many(
"workflows", "checkpoints",
{ workflowId },
{ $set: { step, data, timestamp: new Date() } },
{ upsert: true }
);
};
// Resume from checkpoint
const resume = async (workflowId) => {
const checkpoint = await mcp_MongoDB_find(
"workflows", "checkpoints",
{ workflowId }
);
return executeFromStep(checkpoint.step, checkpoint.data);
};
4. Workflow Versioning
// Track workflow versions
await mcp_Memory_create_entities([{
name: `Workflow_${name}_v${version}`,
entityType: "Workflow",
observations: [
`Version: ${version}`,
`Steps: ${steps.join(' β ')}`,
`Changes from v${version-1}: ${changes}`
]
}]);
5. Performance Monitoring
// Track execution times
const tracked = async (name, fn) => {
const start = Date.now();
const result = await fn();
const duration = Date.now() - start;
await mcp_Memory_add_observations([{
entityName: "PerformanceMetrics",
contents: [`${name}: ${duration}ms @ ${new Date().toISOString()}`]
}]);
return result;
};
6. Dynamic Workflow Generation
// Use UltraThink to design workflow
const workflowDesign = await mcp_UltraThink_ultrathink({
thought: `Given task: ${taskDescription}
Available MCPs: ${mcpList}
Design optimal workflow:
- Step 1: ...
- Step 2: ...
- Parallel opportunities: ...
- Error handling: ...`,
total_thoughts: 20
});
// Execute designed workflow
await executeWorkflow(workflowDesign.steps);
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.