Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add olakai-ai/olakai-skills --skill "olakai-add-monitoring"
Install specific skill from multi-skill repository
# Description
>
# SKILL.md
name: olakai-add-monitoring
description: >
Add Olakai monitoring to an existing AI agent or LLM integration.
AUTO-INVOKE when user wants to: add monitoring to existing code, integrate
observability into a working agent, instrument an existing AI system,
add tracking to LLM calls, wrap OpenAI/Anthropic clients, add analytics
to working AI code, or retrofit monitoring to production AI.
TRIGGER KEYWORDS: olakai, add monitoring, integrate monitoring, instrument,
wrap client, observability, SDK integration, @olakai/sdk, olakai-sdk,
existing agent, existing code, add tracking, analytics, telemetry,
retrofit monitoring, existing LLM, existing OpenAI, existing Anthropic.
DO NOT load for: creating new agents from scratch (use olakai-create-agent),
troubleshooting issues (use olakai-troubleshoot), or generating reports
(use generate-analytics-reports).
license: MIT
metadata:
author: olakai
version: "1.8.0"
Add Olakai Monitoring to Existing Agent
This skill guides you through adding Olakai monitoring to an existing AI agent or LLM-powered application with minimal code changes.
For full SDK documentation, see: https://app.olakai.ai/llms.txt
Prerequisites
- Existing working AI agent/application using OpenAI, Anthropic, or other LLM
- Olakai CLI installed and authenticated (
npm install -g olakai-cli && olakai login) - Olakai API key for your agent (get via CLI:
olakai agents get AGENT_ID --json | jq '.apiKey') - Node.js 18+ (for TypeScript) or Python 3.7+ (for Python)
Note: Each agent can have its own API key. Create one with
olakai agents create --name "Name" --with-api-key
Why Custom KPIs Are Essential
Adding monitoring is only the first step. The real value of Olakai comes from tracking custom KPIs specific to your agent's business purpose.
Without KPIs configured:
- ❌ Only basic token counts and request logs
- ❌ No aggregated business metrics on dashboard
- ❌ No alerting capabilities
- ❌ No ROI tracking
With KPIs configured:
- ✅ Custom metrics (items processed, success rates, quality scores)
- ✅ Trend analysis and performance dashboards
- ✅ Threshold-based alerting
- ✅ Business value calculations
⚠️ Plan to configure at least 2-4 KPIs that answer: "How do I know this agent is performing well?"
⚠️ KPIs are unique per agent. If adding monitoring to an agent that needs the same KPIs as another already-configured agent, you must still create new KPI definitions for this agent. KPIs cannot be shared or reused across agents.
Understanding the customData → KPI Pipeline
Before adding monitoring, understand how custom data flows through Olakai:
SDK customData → CustomDataConfig (Schema) → Context Variable → KPI Formula → kpiData
Critical Rules
| Rule | Consequence |
|---|---|
| Only CustomDataConfig fields become variables | Unregistered customData fields are NOT usable in KPIs |
| Formula evaluation is case-insensitive | stepCount, STEPCOUNT, StepCount all work in formulas |
| NUMBER configs need numeric values | Don't send "5" (string), send 5 (number) |
⚠️ IMPORTANT: The SDK accepts any JSON in
customData, but only fields registered as CustomDataConfigs are processed. Unregistered fields are stored but cannot be used in KPIs.
Quick Start (5-Minute Integration)
For TypeScript/JavaScript
1. Install the SDK:
npm install @olakai/sdk
2. Wrap your existing client:
Before:
import OpenAI from "openai";
const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY });
After:
import OpenAI from "openai";
import { OlakaiSDK } from "@olakai/sdk";
const olakai = new OlakaiSDK({ apiKey: process.env.OLAKAI_API_KEY! });
await olakai.init();
const openai = olakai.wrap(
new OpenAI({ apiKey: process.env.OPENAI_API_KEY }),
{ provider: "openai" }
);
That's it! All calls through openai are now automatically tracked.
For Python
1. Install the SDK:
pip install olakai-sdk
2. Add instrumentation:
Before:
from openai import OpenAI
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
After:
from openai import OpenAI
from olakaisdk import olakai_config, instrument_openai
olakai_config(os.getenv("OLAKAI_API_KEY"))
instrument_openai()
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
That's it! All calls through client are now automatically tracked.
Detailed Integration Guide
Step 1: Identify Your Integration Pattern
Pattern A: Single LLM Client
You have one OpenAI/Anthropic client used throughout your app.
→ Use the wrapped client approach (shown above)
Pattern B: Multiple LLM Calls per Request
Your agent makes several LLM calls to complete one task.
→ Use manual event tracking to aggregate calls
Pattern C: Streaming Responses
You stream LLM responses to users.
→ SDK handles this automatically; events sent after stream completes
Pattern D: Third-Party LLM (not OpenAI/Anthropic)
You use Perplexity, Groq, local models, etc.
→ Use manual event tracking via REST API or olakai.event()
Step 2: Install and Configure
TypeScript Setup
// lib/olakai.ts - Create a singleton
import { OlakaiSDK } from "@olakai/sdk";
import OpenAI from "openai";
let olakaiInstance: OlakaiSDK | null = null;
let wrappedOpenAI: OpenAI | null = null;
export async function getOlakaiClient(): Promise<OlakaiSDK> {
if (!olakaiInstance) {
olakaiInstance = new OlakaiSDK({
apiKey: process.env.OLAKAI_API_KEY!,
debug: process.env.NODE_ENV === "development",
retries: 3,
timeout: 30000,
});
await olakaiInstance.init();
}
return olakaiInstance;
}
export async function getOpenAI(): Promise<OpenAI> {
if (!wrappedOpenAI) {
const olakai = await getOlakaiClient();
wrappedOpenAI = olakai.wrap(
new OpenAI({ apiKey: process.env.OPENAI_API_KEY }),
{
provider: "openai",
defaultContext: {
task: "Software Development", // Default task category
},
}
);
}
return wrappedOpenAI;
}
Python Setup
# lib/olakai.py - Create initialization module
import os
from olakaisdk import olakai_config, instrument_openai
_initialized = False
def init_olakai():
global _initialized
if not _initialized:
olakai_config(
api_key=os.getenv("OLAKAI_API_KEY"),
debug=os.getenv("DEBUG") == "true"
)
instrument_openai()
_initialized = True
# Call at app startup
init_olakai()
Step 3: Add Context to Calls
Adding User Information
TypeScript:
const response = await openai.chat.completions.create(
{
model: "gpt-4o",
messages: [{ role: "user", content: userMessage }],
},
{
userEmail: user.email, // Track by user
task: "Customer Experience", // Categorize
}
);
// Session grouping is automatic
Python:
from olakaisdk import olakai_context
with olakai_context(
userEmail=user.email,
userId=user.id, # Optional: explicit user tracking
task="Customer Experience"
):
response = client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": user_message}]
)
# Note: Session grouping is automatic via internal sessionId
Adding Custom Data
⚠️ IMPORTANT: Only send fields you've registered as CustomDataConfigs (Step 5.3). Unregistered fields are stored but cannot be used in KPIs.
⚠️ Only send data you'll use in KPIs or for filtering. Don't duplicate fields already tracked by the platform:
- Session ID, Agent ID (automatic)
- User email (useuserEmailparameter)
- Timestamps, token count, model, provider (automatic)
TypeScript:
const response = await openai.chat.completions.create(
{ model: "gpt-4o", messages },
{
userEmail: user.email,
customData: {
// Only include fields registered as CustomDataConfigs
Department: user.department,
ProjectId: currentProject.id,
Priority: ticket.priority,
// ❌ Don't add unregistered fields - they can't be used in KPIs
},
}
);
Python:
with olakai_context(
userEmail=user.email,
customData={
# Only include fields registered as CustomDataConfigs
"Department": user.department,
"ProjectId": project.id,
"Priority": ticket.priority
}
):
response = client.chat.completions.create(...)
Step 4: Handle Agentic Workflows
If your agent makes multiple LLM calls per task, aggregate them into a single event:
async function processDocument(doc: Document): Promise<ProcessingResult> {
const olakai = await getOlakaiClient();
const openai = await getOpenAI();
const startTime = Date.now();
let totalTokens = 0;
// Step 1: Extract
const extraction = await openai.chat.completions.create({
model: "gpt-4o",
messages: [{ role: "user", content: `Extract from: ${doc.content}` }],
});
totalTokens += extraction.usage?.total_tokens ?? 0;
// Step 2: Analyze
const analysis = await openai.chat.completions.create({
model: "gpt-4o",
messages: [{ role: "user", content: `Analyze: ${extraction.choices[0].message.content}` }],
});
totalTokens += analysis.usage?.total_tokens ?? 0;
// Step 3: Summarize
const summary = await openai.chat.completions.create({
model: "gpt-4o",
messages: [{ role: "user", content: `Summarize: ${analysis.choices[0].message.content}` }],
});
totalTokens += summary.usage?.total_tokens ?? 0;
const result = summary.choices[0].message.content ?? "";
// Track the complete workflow as ONE event
// ⚠️ Only send fields registered as CustomDataConfigs
olakai.event({
prompt: `Process document: ${doc.title}`,
response: result,
tokens: totalTokens,
requestTime: Date.now() - startTime,
task: "Data Processing & Analysis",
customData: {
// Only registered fields - see Step 5.3
DocumentId: doc.id,
DocumentType: doc.type,
StepCount: 3,
Success: 1, // Use 1/0 for boolean in NUMBER fields
},
});
return { summary: result, tokens: totalTokens };
}
Step 5: Configure Custom Metrics (Essential for Value)
⚠️ This step is required to get real value from Olakai. Without KPIs, you're only logging events - not gaining actionable insights.
| Without KPIs | With KPIs |
|---|---|
| Raw event logs only | Aggregated business metrics |
| No dashboard insights | Visual performance trends |
| No alerting | Threshold-based alerts |
| No ROI tracking | Calculated business value |
5.1 Install CLI (if not already)
npm install -g olakai-cli
olakai login
5.2 Register Your Agent
# Create agent entry (associate with a workflow)
olakai agents create --name "Document Processor" --description "Processes and summarizes documents" --workflow WORKFLOW_ID --with-api-key
# Note the agent ID returned
5.2.1 Ensure Agent Has a Workflow
⚠️ Every agent MUST belong to a workflow, even if it's the only agent.
# Check if agent has a workflow
olakai agents get YOUR_AGENT_ID --json | jq '.workflowId'
# If null, create a workflow and associate:
olakai workflows create --name "Your Workflow Name" --json
olakai agents update YOUR_AGENT_ID --workflow WORKFLOW_ID
Why workflows matter:
- Enable future multi-agent expansion
- Provide workflow-level KPI aggregation
- Establish proper organizational hierarchy
5.3 Create Custom Data Configs FIRST
⚠️ IMPORTANT: Create configs for ALL fields you send in
customData. Only registered fields can be used in KPIs. CustomDataConfigs are now agent-scoped, so use--agent-id.
# Replace YOUR_AGENT_ID with the actual agent ID from step 5.1
# For each field in your customData, create a config
olakai custom-data create --agent-id YOUR_AGENT_ID --name "DocumentId" --type STRING
olakai custom-data create --agent-id YOUR_AGENT_ID --name "DocumentType" --type STRING
olakai custom-data create --agent-id YOUR_AGENT_ID --name "StepCount" --type NUMBER
olakai custom-data create --agent-id YOUR_AGENT_ID --name "Success" --type NUMBER # Use 1/0 for boolean
# Verify all configs exist for this agent
olakai custom-data list --agent-id YOUR_AGENT_ID
What this enables:
- ✅ These field names become context variables in KPI formulas for this agent
- ✅ Values sent in SDK customData with these names are processed
- ❌ Any customData field NOT listed here is ignored for KPI purposes
5.4 Create KPIs
⚠️ Both CustomDataConfigs and KPIs are created for THIS agent specifically. They are bound to a single agent. If another agent needs the same fields/metrics, create them again with that agent's ID.
olakai kpis create \
--name "Documents Processed" \
--agent-id YOUR_AGENT_ID \
--calculator-id formula \
--formula "IF(Success = 1, 1, 0)" \
--aggregation SUM
olakai kpis create \
--name "Avg Steps per Document" \
--agent-id YOUR_AGENT_ID \
--calculator-id formula \
--formula "StepCount" \
--aggregation AVERAGE
5.5 Update SDK Code to Match
After creating configs, ensure your SDK code sends exactly those field names:
customData: {
DocumentId: doc.id, // Matches CustomDataConfig "DocumentId"
DocumentType: doc.type, // Matches CustomDataConfig "DocumentType"
StepCount: 3, // Matches CustomDataConfig "StepCount"
Success: true ? 1 : 0, // Matches CustomDataConfig "Success"
// ❌ Don't add fields without configs - they won't be usable in KPIs
}
Framework-Specific Integrations
Next.js API Routes
// app/api/chat/route.ts
import { NextRequest, NextResponse } from "next/server";
import { getOpenAI } from "@/lib/olakai";
import { auth } from "@/auth";
export async function POST(req: NextRequest) {
const session = await auth();
if (!session?.user) {
return NextResponse.json({ error: "Unauthorized" }, { status: 401 });
}
const { message, conversationId } = await req.json();
const openai = await getOpenAI();
const response = await openai.chat.completions.create(
{
model: "gpt-4o",
messages: [{ role: "user", content: message }],
},
{
userEmail: session.user.email!,
task: "Customer Experience",
}
);
// Session grouping is automatic
return NextResponse.json({
reply: response.choices[0].message.content,
});
}
Express.js
// middleware/olakai.ts
import { getOlakaiClient, getOpenAI } from "../lib/olakai";
export async function initOlakai() {
await getOlakaiClient();
console.log("Olakai initialized");
}
// routes/chat.ts
import express from "express";
import { getOpenAI } from "../lib/olakai";
const router = express.Router();
router.post("/", async (req, res) => {
const openai = await getOpenAI();
const { message } = req.body;
const response = await openai.chat.completions.create(
{ model: "gpt-4o", messages: [{ role: "user", content: message }] },
{ userEmail: req.user.email }
);
// Session grouping is automatic
res.json({ reply: response.choices[0].message.content });
});
FastAPI (Python)
# main.py
from fastapi import FastAPI, Depends
from openai import OpenAI
from olakaisdk import olakai_config, instrument_openai, olakai_context
app = FastAPI()
@app.on_event("startup")
async def startup():
olakai_config(os.getenv("OLAKAI_API_KEY"))
instrument_openai()
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
@app.post("/chat")
async def chat(message: str, user: User = Depends(get_current_user)):
with olakai_context(userEmail=user.email, task="Customer Support"):
response = client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": message}]
)
return {"reply": response.choices[0].message.content}
Handling Edge Cases
Streaming Responses
The SDK automatically handles streaming. Events are sent after the stream completes:
const stream = await openai.chat.completions.create(
{
model: "gpt-4o",
messages: [{ role: "user", content: userMessage }],
stream: true,
},
{ userEmail: user.email }
);
for await (const chunk of stream) {
// Stream to client
res.write(chunk.choices[0]?.delta?.content ?? "");
}
// Event automatically sent here with full response
Error Handling
Wrap calls to ensure errors are tracked:
try {
const response = await openai.chat.completions.create({
model: "gpt-4o",
messages,
});
return response.choices[0].message.content;
} catch (error) {
// SDK still tracks the failed attempt
// Optionally send explicit error event
olakai.event({
prompt: messages[messages.length - 1].content,
response: `Error: ${error instanceof Error ? error.message : "Unknown"}`,
task: "Software Development",
customData: { error: true, errorType: error.name },
});
throw error;
}
Non-OpenAI Providers
For Anthropic, Perplexity, or other providers, use manual tracking:
import Anthropic from "@anthropic-ai/sdk";
const anthropic = new Anthropic({ apiKey: process.env.ANTHROPIC_API_KEY });
async function callClaude(prompt: string): Promise<string> {
const startTime = Date.now();
const response = await anthropic.messages.create({
model: "claude-sonnet-4-20250514",
max_tokens: 1024,
messages: [{ role: "user", content: prompt }],
});
const content = response.content[0].type === "text" ? response.content[0].text : "";
// Manual tracking for non-wrapped clients
olakai.event({
prompt,
response: content,
tokens: response.usage.input_tokens + response.usage.output_tokens,
requestTime: Date.now() - startTime,
task: "Content Development",
customData: {
provider: "anthropic",
model: "claude-sonnet-4-20250514",
},
});
return content;
}
Test-Validate-Iterate Cycle
CRITICAL: Never assume your integration is working. Always validate by generating a test event and inspecting the actual data.
Step 1: Generate a Test Event
Run your application to trigger at least one LLM call:
# For a web app, make a test request
curl -X POST http://localhost:3000/api/chat -d '{"message": "test"}'
# For a script, run it
node my-agent.js "test input"
python my_agent.py "test input"
Step 2: Fetch and Inspect the Event
# Get the most recent event
olakai activity list --limit 1 --json
# Get full details (note the event ID from above)
olakai activity get EVENT_ID --json
Step 3: Validate Each Component
Check the event was received:
olakai activity list --limit 1 --json | jq '.prompts[0] | {id, createdAt, app}'
If no event: Check API key, SDK initialization, and debug mode.
Check customData is present:
olakai activity get EVENT_ID --json | jq '.customData'
If missing or incomplete: Verify your SDK code passes customData correctly.
Check KPIs are numeric (if configured):
olakai activity get EVENT_ID --json | jq '.kpiData'
CORRECT:
{ "My KPI": 42 }
WRONG (formula stored as string):
{ "My KPI": "MyVariable" }
Fix with: olakai kpis update KPI_ID --formula "MyVariable"
WRONG (null value):
{ "My KPI": null }
Fix by ensuring:
1. CustomDataConfig exists: olakai custom-data create --agent-id ID --name "MyVariable" --type NUMBER
2. Field name case matches exactly (case-sensitive)
3. SDK actually sends the field in customData
Step 4: Iterate Until Correct
┌────────────────────────────────────────────────────┐
│ 1. Trigger LLM call (generate event) │
│ ↓ │
│ 2. Fetch: olakai activity get ID --json │
│ ↓ │
│ 3. Event exists? │
│ NO → Check API key, SDK init, debug mode │
│ ↓ │
│ 4. customData correct? │
│ NO → Fix SDK customData parameter │
│ ↓ │
│ 5. kpiData numeric? │
│ NO → olakai kpis update ID --formula "X" │
│ ↓ │
│ 6. kpiData not null? │
│ NO → Create CustomDataConfig, check case │
│ ↓ │
│ ✅ Integration validated │
└────────────────────────────────────────────────────┘
Example Validation Session
# 1. Trigger a test call
$ curl -X POST localhost:3000/api/chat -d '{"message":"hello"}'
{"reply":"Hi there!"}
# 2. Fetch the event
$ olakai activity list --limit 1 --json | jq '.prompts[0].id'
"cmkeabc123"
# 3. Inspect it
$ olakai activity get cmkeabc123 --json | jq '{customData, kpiData}'
{
"customData": {
"userId": "user-123",
"department": "Engineering"
},
"kpiData": {
"Response Quality": 8.5
}
}
# ✅ All values present and numeric - integration working!
Common Integration Points
| Application Type | Integration Point | Recommended Approach |
|---|---|---|
| API endpoint | Request handler | Wrap client, add user context |
| Background job | Job execution | Manual event at job completion |
| CLI tool | Command handler | Wrap client |
| Slack/Discord bot | Message handler | Wrap client with user context |
| Scheduled task | Cron function | Manual event with workflow aggregation |
KPI Formula Reference
Supported Operators
| Category | Operators |
|---|---|
| Arithmetic | +, -, *, / |
| Comparison | <, <=, =, <>, >=, > |
| Logical | AND, OR, NOT |
| Conditional | IF(condition, true_val, false_val) |
| Null handling | ISNA(value), ISDEFINED(value) |
Common Formula Patterns
# Simple passthrough
--formula "StepCount"
# Percentage conversion
--formula "SuccessRate * 100"
# Conditional counting
--formula "IF(Success = 1, 1, 0)"
# Boolean detection to number
--formula "IF(PII detected, 1, 0)"
Aggregation Types
| Aggregation | Use For |
|---|---|
SUM |
Totals, counts |
AVERAGE |
Rates, percentages |
Quick Reference
// Wrap client (automatic tracking)
const openai = olakai.wrap(new OpenAI({ apiKey }), { provider: "openai" });
// Add context to calls (session grouping is automatic)
await openai.chat.completions.create(params, {
userEmail: "[email protected]",
task: "Customer Experience",
customData: { key: "value" }
});
// Manual event (for aggregation or non-OpenAI)
olakai.event({
prompt: "input",
response: "output",
tokens: 1500,
requestTime: 5000,
task: "Data Processing & Analysis",
customData: { workflowId: "abc" }
});
# Auto-instrumentation
olakai_config(api_key)
instrument_openai()
# Context for calls
with olakai_context(userEmail="[email protected]", task="Support"):
response = client.chat.completions.create(...)
# Manual event
olakai_event(OlakaiEventParams(
prompt="input",
response="output",
tokens=1500,
customData={"key": "value"}
))
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.