olakai-ai

olakai-add-monitoring

0
0
# Install this skill:
npx skills add olakai-ai/olakai-skills --skill "olakai-add-monitoring"

Install specific skill from multi-skill repository

# Description

>

# SKILL.md


name: olakai-add-monitoring
description: >
Add Olakai monitoring to an existing AI agent or LLM integration.

AUTO-INVOKE when user wants to: add monitoring to existing code, integrate
observability into a working agent, instrument an existing AI system,
add tracking to LLM calls, wrap OpenAI/Anthropic clients, add analytics
to working AI code, or retrofit monitoring to production AI.

TRIGGER KEYWORDS: olakai, add monitoring, integrate monitoring, instrument,
wrap client, observability, SDK integration, @olakai/sdk, olakai-sdk,
existing agent, existing code, add tracking, analytics, telemetry,
retrofit monitoring, existing LLM, existing OpenAI, existing Anthropic.

DO NOT load for: creating new agents from scratch (use olakai-create-agent),
troubleshooting issues (use olakai-troubleshoot), or generating reports
(use generate-analytics-reports).
license: MIT
metadata:
author: olakai
version: "1.8.0"


Add Olakai Monitoring to Existing Agent

This skill guides you through adding Olakai monitoring to an existing AI agent or LLM-powered application with minimal code changes.

For full SDK documentation, see: https://app.olakai.ai/llms.txt

Prerequisites

  • Existing working AI agent/application using OpenAI, Anthropic, or other LLM
  • Olakai CLI installed and authenticated (npm install -g olakai-cli && olakai login)
  • Olakai API key for your agent (get via CLI: olakai agents get AGENT_ID --json | jq '.apiKey')
  • Node.js 18+ (for TypeScript) or Python 3.7+ (for Python)

Note: Each agent can have its own API key. Create one with olakai agents create --name "Name" --with-api-key

Why Custom KPIs Are Essential

Adding monitoring is only the first step. The real value of Olakai comes from tracking custom KPIs specific to your agent's business purpose.

Without KPIs configured:
- ❌ Only basic token counts and request logs
- ❌ No aggregated business metrics on dashboard
- ❌ No alerting capabilities
- ❌ No ROI tracking

With KPIs configured:
- ✅ Custom metrics (items processed, success rates, quality scores)
- ✅ Trend analysis and performance dashboards
- ✅ Threshold-based alerting
- ✅ Business value calculations

⚠️ Plan to configure at least 2-4 KPIs that answer: "How do I know this agent is performing well?"

⚠️ KPIs are unique per agent. If adding monitoring to an agent that needs the same KPIs as another already-configured agent, you must still create new KPI definitions for this agent. KPIs cannot be shared or reused across agents.

Understanding the customData → KPI Pipeline

Before adding monitoring, understand how custom data flows through Olakai:

SDK customData → CustomDataConfig (Schema) → Context Variable → KPI Formula → kpiData

Critical Rules

Rule Consequence
Only CustomDataConfig fields become variables Unregistered customData fields are NOT usable in KPIs
Formula evaluation is case-insensitive stepCount, STEPCOUNT, StepCount all work in formulas
NUMBER configs need numeric values Don't send "5" (string), send 5 (number)

⚠️ IMPORTANT: The SDK accepts any JSON in customData, but only fields registered as CustomDataConfigs are processed. Unregistered fields are stored but cannot be used in KPIs.

Quick Start (5-Minute Integration)

For TypeScript/JavaScript

1. Install the SDK:

npm install @olakai/sdk

2. Wrap your existing client:

Before:

import OpenAI from "openai";
const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY });

After:

import OpenAI from "openai";
import { OlakaiSDK } from "@olakai/sdk";

const olakai = new OlakaiSDK({ apiKey: process.env.OLAKAI_API_KEY! });
await olakai.init();

const openai = olakai.wrap(
  new OpenAI({ apiKey: process.env.OPENAI_API_KEY }),
  { provider: "openai" }
);

That's it! All calls through openai are now automatically tracked.

For Python

1. Install the SDK:

pip install olakai-sdk

2. Add instrumentation:

Before:

from openai import OpenAI
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))

After:

from openai import OpenAI
from olakaisdk import olakai_config, instrument_openai

olakai_config(os.getenv("OLAKAI_API_KEY"))
instrument_openai()

client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))

That's it! All calls through client are now automatically tracked.


Detailed Integration Guide

Step 1: Identify Your Integration Pattern

Pattern A: Single LLM Client
You have one OpenAI/Anthropic client used throughout your app.
→ Use the wrapped client approach (shown above)

Pattern B: Multiple LLM Calls per Request
Your agent makes several LLM calls to complete one task.
→ Use manual event tracking to aggregate calls

Pattern C: Streaming Responses
You stream LLM responses to users.
→ SDK handles this automatically; events sent after stream completes

Pattern D: Third-Party LLM (not OpenAI/Anthropic)
You use Perplexity, Groq, local models, etc.
→ Use manual event tracking via REST API or olakai.event()

Step 2: Install and Configure

TypeScript Setup

// lib/olakai.ts - Create a singleton
import { OlakaiSDK } from "@olakai/sdk";
import OpenAI from "openai";

let olakaiInstance: OlakaiSDK | null = null;
let wrappedOpenAI: OpenAI | null = null;

export async function getOlakaiClient(): Promise<OlakaiSDK> {
  if (!olakaiInstance) {
    olakaiInstance = new OlakaiSDK({
      apiKey: process.env.OLAKAI_API_KEY!,
      debug: process.env.NODE_ENV === "development",
      retries: 3,
      timeout: 30000,
    });
    await olakaiInstance.init();
  }
  return olakaiInstance;
}

export async function getOpenAI(): Promise<OpenAI> {
  if (!wrappedOpenAI) {
    const olakai = await getOlakaiClient();
    wrappedOpenAI = olakai.wrap(
      new OpenAI({ apiKey: process.env.OPENAI_API_KEY }),
      {
        provider: "openai",
        defaultContext: {
          task: "Software Development", // Default task category
        },
      }
    );
  }
  return wrappedOpenAI;
}

Python Setup

# lib/olakai.py - Create initialization module
import os
from olakaisdk import olakai_config, instrument_openai

_initialized = False

def init_olakai():
    global _initialized
    if not _initialized:
        olakai_config(
            api_key=os.getenv("OLAKAI_API_KEY"),
            debug=os.getenv("DEBUG") == "true"
        )
        instrument_openai()
        _initialized = True

# Call at app startup
init_olakai()

Step 3: Add Context to Calls

Adding User Information

TypeScript:

const response = await openai.chat.completions.create(
  {
    model: "gpt-4o",
    messages: [{ role: "user", content: userMessage }],
  },
  {
    userEmail: user.email,        // Track by user
    task: "Customer Experience",  // Categorize
  }
);
// Session grouping is automatic

Python:

from olakaisdk import olakai_context

with olakai_context(
    userEmail=user.email,
    userId=user.id,  # Optional: explicit user tracking
    task="Customer Experience"
):
    response = client.chat.completions.create(
        model="gpt-4",
        messages=[{"role": "user", "content": user_message}]
    )
# Note: Session grouping is automatic via internal sessionId

Adding Custom Data

⚠️ IMPORTANT: Only send fields you've registered as CustomDataConfigs (Step 5.3). Unregistered fields are stored but cannot be used in KPIs.

⚠️ Only send data you'll use in KPIs or for filtering. Don't duplicate fields already tracked by the platform:
- Session ID, Agent ID (automatic)
- User email (use userEmail parameter)
- Timestamps, token count, model, provider (automatic)

TypeScript:

const response = await openai.chat.completions.create(
  { model: "gpt-4o", messages },
  {
    userEmail: user.email,
    customData: {
      // Only include fields registered as CustomDataConfigs
      Department: user.department,
      ProjectId: currentProject.id,
      Priority: ticket.priority,
      // ❌ Don't add unregistered fields - they can't be used in KPIs
    },
  }
);

Python:

with olakai_context(
    userEmail=user.email,
    customData={
        # Only include fields registered as CustomDataConfigs
        "Department": user.department,
        "ProjectId": project.id,
        "Priority": ticket.priority
    }
):
    response = client.chat.completions.create(...)

Step 4: Handle Agentic Workflows

If your agent makes multiple LLM calls per task, aggregate them into a single event:

async function processDocument(doc: Document): Promise<ProcessingResult> {
  const olakai = await getOlakaiClient();
  const openai = await getOpenAI();

  const startTime = Date.now();
  let totalTokens = 0;

  // Step 1: Extract
  const extraction = await openai.chat.completions.create({
    model: "gpt-4o",
    messages: [{ role: "user", content: `Extract from: ${doc.content}` }],
  });
  totalTokens += extraction.usage?.total_tokens ?? 0;

  // Step 2: Analyze
  const analysis = await openai.chat.completions.create({
    model: "gpt-4o",
    messages: [{ role: "user", content: `Analyze: ${extraction.choices[0].message.content}` }],
  });
  totalTokens += analysis.usage?.total_tokens ?? 0;

  // Step 3: Summarize
  const summary = await openai.chat.completions.create({
    model: "gpt-4o",
    messages: [{ role: "user", content: `Summarize: ${analysis.choices[0].message.content}` }],
  });
  totalTokens += summary.usage?.total_tokens ?? 0;

  const result = summary.choices[0].message.content ?? "";

  // Track the complete workflow as ONE event
  // ⚠️ Only send fields registered as CustomDataConfigs
  olakai.event({
    prompt: `Process document: ${doc.title}`,
    response: result,
    tokens: totalTokens,
    requestTime: Date.now() - startTime,
    task: "Data Processing & Analysis",
    customData: {
      // Only registered fields - see Step 5.3
      DocumentId: doc.id,
      DocumentType: doc.type,
      StepCount: 3,
      Success: 1,  // Use 1/0 for boolean in NUMBER fields
    },
  });

  return { summary: result, tokens: totalTokens };
}

Step 5: Configure Custom Metrics (Essential for Value)

⚠️ This step is required to get real value from Olakai. Without KPIs, you're only logging events - not gaining actionable insights.

Without KPIs With KPIs
Raw event logs only Aggregated business metrics
No dashboard insights Visual performance trends
No alerting Threshold-based alerts
No ROI tracking Calculated business value

5.1 Install CLI (if not already)

npm install -g olakai-cli
olakai login

5.2 Register Your Agent

# Create agent entry (associate with a workflow)
olakai agents create --name "Document Processor" --description "Processes and summarizes documents" --workflow WORKFLOW_ID --with-api-key

# Note the agent ID returned

5.2.1 Ensure Agent Has a Workflow

⚠️ Every agent MUST belong to a workflow, even if it's the only agent.

# Check if agent has a workflow
olakai agents get YOUR_AGENT_ID --json | jq '.workflowId'

# If null, create a workflow and associate:
olakai workflows create --name "Your Workflow Name" --json
olakai agents update YOUR_AGENT_ID --workflow WORKFLOW_ID

Why workflows matter:
- Enable future multi-agent expansion
- Provide workflow-level KPI aggregation
- Establish proper organizational hierarchy

5.3 Create Custom Data Configs FIRST

⚠️ IMPORTANT: Create configs for ALL fields you send in customData. Only registered fields can be used in KPIs. CustomDataConfigs are now agent-scoped, so use --agent-id.

# Replace YOUR_AGENT_ID with the actual agent ID from step 5.1
# For each field in your customData, create a config
olakai custom-data create --agent-id YOUR_AGENT_ID --name "DocumentId" --type STRING
olakai custom-data create --agent-id YOUR_AGENT_ID --name "DocumentType" --type STRING
olakai custom-data create --agent-id YOUR_AGENT_ID --name "StepCount" --type NUMBER
olakai custom-data create --agent-id YOUR_AGENT_ID --name "Success" --type NUMBER  # Use 1/0 for boolean

# Verify all configs exist for this agent
olakai custom-data list --agent-id YOUR_AGENT_ID

What this enables:
- ✅ These field names become context variables in KPI formulas for this agent
- ✅ Values sent in SDK customData with these names are processed
- ❌ Any customData field NOT listed here is ignored for KPI purposes

5.4 Create KPIs

⚠️ Both CustomDataConfigs and KPIs are created for THIS agent specifically. They are bound to a single agent. If another agent needs the same fields/metrics, create them again with that agent's ID.

olakai kpis create \
  --name "Documents Processed" \
  --agent-id YOUR_AGENT_ID \
  --calculator-id formula \
  --formula "IF(Success = 1, 1, 0)" \
  --aggregation SUM

olakai kpis create \
  --name "Avg Steps per Document" \
  --agent-id YOUR_AGENT_ID \
  --calculator-id formula \
  --formula "StepCount" \
  --aggregation AVERAGE

5.5 Update SDK Code to Match

After creating configs, ensure your SDK code sends exactly those field names:

customData: {
  DocumentId: doc.id,       // Matches CustomDataConfig "DocumentId"
  DocumentType: doc.type,   // Matches CustomDataConfig "DocumentType"
  StepCount: 3,             // Matches CustomDataConfig "StepCount"
  Success: true ? 1 : 0,    // Matches CustomDataConfig "Success"
  // ❌ Don't add fields without configs - they won't be usable in KPIs
}

Framework-Specific Integrations

Next.js API Routes

// app/api/chat/route.ts
import { NextRequest, NextResponse } from "next/server";
import { getOpenAI } from "@/lib/olakai";
import { auth } from "@/auth";

export async function POST(req: NextRequest) {
  const session = await auth();
  if (!session?.user) {
    return NextResponse.json({ error: "Unauthorized" }, { status: 401 });
  }

  const { message, conversationId } = await req.json();
  const openai = await getOpenAI();

  const response = await openai.chat.completions.create(
    {
      model: "gpt-4o",
      messages: [{ role: "user", content: message }],
    },
    {
      userEmail: session.user.email!,
      task: "Customer Experience",
    }
  );
  // Session grouping is automatic

  return NextResponse.json({
    reply: response.choices[0].message.content,
  });
}

Express.js

// middleware/olakai.ts
import { getOlakaiClient, getOpenAI } from "../lib/olakai";

export async function initOlakai() {
  await getOlakaiClient();
  console.log("Olakai initialized");
}

// routes/chat.ts
import express from "express";
import { getOpenAI } from "../lib/olakai";

const router = express.Router();

router.post("/", async (req, res) => {
  const openai = await getOpenAI();
  const { message } = req.body;

  const response = await openai.chat.completions.create(
    { model: "gpt-4o", messages: [{ role: "user", content: message }] },
    { userEmail: req.user.email }
  );
  // Session grouping is automatic

  res.json({ reply: response.choices[0].message.content });
});

FastAPI (Python)

# main.py
from fastapi import FastAPI, Depends
from openai import OpenAI
from olakaisdk import olakai_config, instrument_openai, olakai_context

app = FastAPI()

@app.on_event("startup")
async def startup():
    olakai_config(os.getenv("OLAKAI_API_KEY"))
    instrument_openai()

client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))

@app.post("/chat")
async def chat(message: str, user: User = Depends(get_current_user)):
    with olakai_context(userEmail=user.email, task="Customer Support"):
        response = client.chat.completions.create(
            model="gpt-4",
            messages=[{"role": "user", "content": message}]
        )
    return {"reply": response.choices[0].message.content}

Handling Edge Cases

Streaming Responses

The SDK automatically handles streaming. Events are sent after the stream completes:

const stream = await openai.chat.completions.create(
  {
    model: "gpt-4o",
    messages: [{ role: "user", content: userMessage }],
    stream: true,
  },
  { userEmail: user.email }
);

for await (const chunk of stream) {
  // Stream to client
  res.write(chunk.choices[0]?.delta?.content ?? "");
}
// Event automatically sent here with full response

Error Handling

Wrap calls to ensure errors are tracked:

try {
  const response = await openai.chat.completions.create({
    model: "gpt-4o",
    messages,
  });
  return response.choices[0].message.content;
} catch (error) {
  // SDK still tracks the failed attempt
  // Optionally send explicit error event
  olakai.event({
    prompt: messages[messages.length - 1].content,
    response: `Error: ${error instanceof Error ? error.message : "Unknown"}`,
    task: "Software Development",
    customData: { error: true, errorType: error.name },
  });
  throw error;
}

Non-OpenAI Providers

For Anthropic, Perplexity, or other providers, use manual tracking:

import Anthropic from "@anthropic-ai/sdk";

const anthropic = new Anthropic({ apiKey: process.env.ANTHROPIC_API_KEY });

async function callClaude(prompt: string): Promise<string> {
  const startTime = Date.now();

  const response = await anthropic.messages.create({
    model: "claude-sonnet-4-20250514",
    max_tokens: 1024,
    messages: [{ role: "user", content: prompt }],
  });

  const content = response.content[0].type === "text" ? response.content[0].text : "";

  // Manual tracking for non-wrapped clients
  olakai.event({
    prompt,
    response: content,
    tokens: response.usage.input_tokens + response.usage.output_tokens,
    requestTime: Date.now() - startTime,
    task: "Content Development",
    customData: {
      provider: "anthropic",
      model: "claude-sonnet-4-20250514",
    },
  });

  return content;
}

Test-Validate-Iterate Cycle

CRITICAL: Never assume your integration is working. Always validate by generating a test event and inspecting the actual data.

Step 1: Generate a Test Event

Run your application to trigger at least one LLM call:

# For a web app, make a test request
curl -X POST http://localhost:3000/api/chat -d '{"message": "test"}'

# For a script, run it
node my-agent.js "test input"
python my_agent.py "test input"

Step 2: Fetch and Inspect the Event

# Get the most recent event
olakai activity list --limit 1 --json

# Get full details (note the event ID from above)
olakai activity get EVENT_ID --json

Step 3: Validate Each Component

Check the event was received:

olakai activity list --limit 1 --json | jq '.prompts[0] | {id, createdAt, app}'

If no event: Check API key, SDK initialization, and debug mode.

Check customData is present:

olakai activity get EVENT_ID --json | jq '.customData'

If missing or incomplete: Verify your SDK code passes customData correctly.

Check KPIs are numeric (if configured):

olakai activity get EVENT_ID --json | jq '.kpiData'

CORRECT:

{ "My KPI": 42 }

WRONG (formula stored as string):

{ "My KPI": "MyVariable" }

Fix with: olakai kpis update KPI_ID --formula "MyVariable"

WRONG (null value):

{ "My KPI": null }

Fix by ensuring:
1. CustomDataConfig exists: olakai custom-data create --agent-id ID --name "MyVariable" --type NUMBER
2. Field name case matches exactly (case-sensitive)
3. SDK actually sends the field in customData

Step 4: Iterate Until Correct

┌────────────────────────────────────────────────────┐
│  1. Trigger LLM call (generate event)              │
│                    ↓                               │
│  2. Fetch: olakai activity get ID --json           │
│                    ↓                               │
│  3. Event exists?                                  │
│     NO → Check API key, SDK init, debug mode       │
│                    ↓                               │
│  4. customData correct?                            │
│     NO → Fix SDK customData parameter              │
│                    ↓                               │
│  5. kpiData numeric?                               │
│     NO → olakai kpis update ID --formula "X"       │
│                    ↓                               │
│  6. kpiData not null?                              │
│     NO → Create CustomDataConfig, check case       │
│                    ↓                               │
│  ✅ Integration validated                          │
└────────────────────────────────────────────────────┘

Example Validation Session

# 1. Trigger a test call
$ curl -X POST localhost:3000/api/chat -d '{"message":"hello"}'
{"reply":"Hi there!"}

# 2. Fetch the event
$ olakai activity list --limit 1 --json | jq '.prompts[0].id'
"cmkeabc123"

# 3. Inspect it
$ olakai activity get cmkeabc123 --json | jq '{customData, kpiData}'
{
  "customData": {
    "userId": "user-123",
    "department": "Engineering"
  },
  "kpiData": {
    "Response Quality": 8.5
  }
}

# ✅ All values present and numeric - integration working!

Common Integration Points

Application Type Integration Point Recommended Approach
API endpoint Request handler Wrap client, add user context
Background job Job execution Manual event at job completion
CLI tool Command handler Wrap client
Slack/Discord bot Message handler Wrap client with user context
Scheduled task Cron function Manual event with workflow aggregation

KPI Formula Reference

Supported Operators

Category Operators
Arithmetic +, -, *, /
Comparison <, <=, =, <>, >=, >
Logical AND, OR, NOT
Conditional IF(condition, true_val, false_val)
Null handling ISNA(value), ISDEFINED(value)

Common Formula Patterns

# Simple passthrough
--formula "StepCount"

# Percentage conversion
--formula "SuccessRate * 100"

# Conditional counting
--formula "IF(Success = 1, 1, 0)"

# Boolean detection to number
--formula "IF(PII detected, 1, 0)"

Aggregation Types

Aggregation Use For
SUM Totals, counts
AVERAGE Rates, percentages

Quick Reference

// Wrap client (automatic tracking)
const openai = olakai.wrap(new OpenAI({ apiKey }), { provider: "openai" });

// Add context to calls (session grouping is automatic)
await openai.chat.completions.create(params, {
  userEmail: "[email protected]",
  task: "Customer Experience",
  customData: { key: "value" }
});

// Manual event (for aggregation or non-OpenAI)
olakai.event({
  prompt: "input",
  response: "output",
  tokens: 1500,
  requestTime: 5000,
  task: "Data Processing & Analysis",
  customData: { workflowId: "abc" }
});
# Auto-instrumentation
olakai_config(api_key)
instrument_openai()

# Context for calls
with olakai_context(userEmail="[email protected]", task="Support"):
    response = client.chat.completions.create(...)

# Manual event
olakai_event(OlakaiEventParams(
    prompt="input",
    response="output",
    tokens=1500,
    customData={"key": "value"}
))

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.